Содержание материала
Частные случаи формул для вычисления скорости
Если модуль скорости не изменяется во времени, то такое движение называют равномерным (v=const).
При равномерном движении скорость можно вычислить, применяя формулу:
где s– длина пути, t – время, за которое материальная точка преодолела путь s.
При ускоренном движении скорость можно найти как:
где $\bar{a}$ – ускорение точки,
$t_{1} \leq t \leq t_{2}$ – отрезок времени, в течение которого рассматривается скорость.
Если движение является равнопеременным, то применяется следующая формула для вычисления скорости:
где $\bar{v}_0$ – начальная скорость движения,
$\bar{a} = const$ .
Взаимосвязь скорости, времени, расстояния
Скорость, время и расстояние связаны между собой очень крепко. Одно без другого даже сложно представить.
Если известны скорость и время движения, то можно найти расстояние. Оно равно скорости, умноженной на время: s = v × t.
Задачка 1. Мы вышли из дома и направились в гости в соседний двор. Мы дошли до соседнего двора за 15 минут. Фитнес браслет показал, что наша скорость была 50 метров в минуту. Какое расстояние мы прошли?
Если за одну минуту мы прошли 50 метров, то сколько таких пятьдесят метров мы пройдем за 10 минут? Умножив 50 метров на 15, мы определим расстояние от дома до магазина:
s = v × t = 50 × 15 = 750
Ответ: мы прошли 750 метров.
Если известно время и расстояние, то можно найти скорость: v = s : t.
Задачка 2. Двое школьников решили проверить, кто быстрее добежит от двора до спортплощадки. Расстояние от двора до магазина с мороженым 100 метров. Первый школьник добежал за 25 секунд. Второй за 50 секунд. Кто добежал быстрее?
Быстрее добежал тот, кто за 1 секунду пробежал большее расстояние. Говорят, что у него скорость движения больше. В этой задаче скорость школьников это расстояние, которое они пробегают за 1 секунду.
Чтобы найти скорость, нужно расстояние разделить на время движения. Найдем скорость первого школьника: для этого разделим 100 метров на время движения первого школьника, то есть на 25 секунд:
Если расстояние дано в метрах, а время движения в секундах, то скорость измеряется в метрах в секунду (м/с). Если расстояние дано в километрах, а время движения в часах, скорость измеряется в километрах в час (км/ч).
В нашей задаче расстояние дано в метрах, а время в секундах. Значит будем измерять скорость в метрах в секунду (м/с).
Так мы узнали, что скорость движения первого школьника 4 метра в секунду.
Теперь найдем скорость движения второго школьника. Для этого разделим расстояние на время движения второго школьника, то есть на 50 секунд:
Значит скорость движения второго школьника составляет 2 метра в секунду.
Сейчас можно сравнить скорости движения каждого школьника и узнать, кто добежал быстрее.
Скорость первого школьника больше. Значит он добежал до магазина с мороженым быстрее.
Ответ: первый школьник добежал быстрее.
Если известна скорость и расстояние, то можно найти время: t = s : v.
Задачка 3. От школы до стадиона 500 метров. Мы должны дойти до него пешком. Наша скорость будет 100 метров в минуту. За какое время мы дойдем до стадиона из школы?
Если за одну минуту мы будем проходить 100 метров, то сколько таких минут со ста метрами будет в 500 метрах?
Чтобы ответить на этот вопрос нужно 500 метров разделить на расстояние, которое мы будем проходить за одну минуту, то есть на 100. Тогда мы получим время, за которое мы дойдем до стадиона:
t = s : v = 500 : 100 = 5
Ответ: от школы до стадиона мы дойдем за 5 минут.
Специально для уроков математики можно распечатать или нарисовать самостоятельно такую таблицу, чтобы быстрее запомнить и применять формулы скорости, времени, расстояния.
Еще больше практики — в детской онлайн-школе Skysmart. Ученики решают примеры на интерактивной платформе: в игровом формате и с мгновенной автоматической проверкой. А еще отслеживают прогресс в личном кабинете и вдохновляются на новые свершения.
Запишите ребенка на бесплатный вводный урок математики: покажем, как все устроено и наметим индивидуальную программу, чтобы ребенок лучше учился в школе и не боялся контрольных.
Почему в часе 60 минут, в минуте – 60 секунд, а в сутках – 24 часа?
Сразу оговоримся, что изложенное ниже во многом является личными предположениями автора, сделанными на основе исторических сведений. Если у наших читателей появятся уточнения или вопросы, мы будем рады видеть их в обсуждениях.
Древним народам нужна была какая-то основа, чтобы строить свои системы счисления. В Вавилоне за такую основу было взято число 60.
Именно благодаря шестидесятеричной системе счисления, придуманной шумерами и позже распространившейся в Древнем Вавилоне, окружность содержит 360 градусов, градус – 60 минут, а минута – 60 секунд.
Год можно представить в виде окружности, содержащей 360 градусов. Возможно, число 360 в данном контексте взялось оттого, что в году 365 дней, и эту цифру просто округлили до 360.
Когда-то самой короткой единицей измерения времени был час. Древние вавилоняне были сильными математиками и решили ввести меньшие единицы времени, используя свое любимое число 60. Поэтому, в часе 60 минут, а в минуте 60 секунд.
Но почему день делится на 12 часов? За это нужно сказать спасибо древним египтянам и их двенадцатиричной системе. День и ночь делились на 12 раных частей, считаясь разными царствами бытия. Скорее всего, первоначально использование числа 12 связано с количеством оборотов Луны вокруг Земли за год.
Формулы для равноускоренного движения
Формула для скорости при равноускоренном движении:
v=v+at.
Здесь v — начальная скорость тела, a=const — ускорение.
Покажем на графике, что при равноускоренном движении зависимость v(t) имеет вид прямой линии.
Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.
a=v-vt=BCAC
Чем больше угол β, тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.
Для первого графика: v=-2 мс; a=,5 мс2.
Для второго графика: v=3 мс; a=-13 мс2.
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Описать задание
По данному графику можно также вычислить перемещение тела за время t. Как это сделать?
Выделим на графике малый отрезок времени ∆t. Будем считать, что он настолько мал, что движение за время ∆t можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка ∆t. Тогда, перемещение ∆s за время ∆t будет равно ∆s=v∆t.
Разобьем все время t на бесконечно малые промежутки ∆t. Перемещение s за время t равно площади трапеции ODEF.
s=OD+EF2OF=v+v2t=2v+(v-v)2t.
Мы знаем, что v-v=at, поэтому окончательная формула для перемещения тела примет вид:
s=vt+at22
Для того, чтобы найти координату тела в данный момент времени, нужно к начальной координате тела добавить перемещение. Изменение координаты в зависимости от времени выражает закон равноускоренного движения.
ЗАДАЧИ на Прямолинейное равноускоренное движение с решениями
Формулы, используемые в 9-11 классах по теме
«ЗАДАЧИ на Прямолинейное равноускоренное движение».
Время | с | ||
Проекция начальной скорости | м/с | ||
Проекция мгновенной скорости | м/с | ||
Проекция ускорения | м/с2 | ||
Проекция перемещения | м | ||
Координата | м |
1 мин = 60 с; 1 ч = 3600 с; 1 км = 1000 м; 1 м/с = 3,6 км/ч.
В 7 классе используйте другой конспект — «Задачи на движение с решениями»
Для подготовки к ЕГЭ пользуйтесь «ТЕМАТИЧЕСКИМ ТРЕНИНГОМ»
ПРИМЕРЫ РЕШЕНИЯ ТИПОВЫХ ЗАДАЧ
Задача № 1.
Автомобиль, двигаясь с ускорением -0,5 м/с2, уменьшил свою скорость от 54 до 18 км/ч. Сколько времени ему для этого понадобилось?
Задача № 2.
При подходе к станции поезд начал торможение, имея начальную скорость 90 км/ч и ускорение 0,1 м/с2. Определите тормозной путь поезда, если торможение длилось 1 мин.
Задача № 3.
По графику проекции скорости определите: 1) начальную скорость тела; 2) время движения тела до остановки; 3) ускорение тела; 4) вид движения (разгоняется тело или тормозит); 5) запишите уравнение проекции скорости; 6) запишите уравнение координаты (начальную координату считайте равной нулю).
Решение:
Задача № 4.
Движение двух тел задано уравнениями проекции скорости:v1x(t) = 2 + 2tv2x(t) = 6 – 2tВ одной координатной плоскости постройте график проекции скорости каждого тела. Что означает точка пересечения графиков?
Задача № 5.
Движение тела задано уравнением x(t) = 5 + 10t — 0,5t2. Определите: 1) начальную координату тела; 2) проекцию скорости тела; 3) проекцию ускорения; 4) вид движения (разгоняется тело или тормозит); 5) запишите уравнение проекции скорости; 6) определите значение координаты и скорости в момент времени t = 4 с. Сравним уравнение координаты в общем виде с данным уравнением и найдем искомые величины.
Решение:
Задача № 6.
Вагон движется равноускоренно с ускорением -0,5 м/с2. Начальная скорость вагона равна 54 км/ч. Через сколько времени вагон остановится? Постройте график зависимости скорости от времени.
Задача № 7.
Самолет, летевший прямолинейно с постоянной скоростью 360 км/ч, стал двигаться с постоянным ускорением 9 м/с2 в течение 10 с в том же направлении. Какой скорости достиг самолет и какое расстояние он пролетел за это время? Чему равна средняя скорость за время 10 с при ускоренном движении?
Задача № 8.
Трамвай двигался равномерно прямолинейно со скоростью 6 м/с, а в процессе торможения — равноускоренно с ускорением 0,6 м/с2. Определите время торможения и тормозной путь трамвая. Постройте графики скорости v(t) и ускорения a(t).
Задача № 9.
Тело, имея некоторую начальную скорость, движется равноускоренно. За время t = 2 с тело прошло путь S = 18 м, причём его скорость увеличилась в 5 раз. Найти ускорение и начальную скорость тела.
Задача № 10. (повышенной сложности)
Прямолинейное движение описывается формулой х = –4 + 2t – t2. Опишите движение, постройте для него графики vx(t), sx(t), l(t).
Задача № 11.
ОГЭ
Поезд, идущий со скоростью v = 36 км/ч, начинает двигаться равноускоренно и проходит путь S = 600 м, имея в конце этого участка скорость v = 45 км/ч. Определить ускорение поезда а и время t его ускоренного движения.
Краткое пояснение для решения
ЗАДАЧИ на Прямолинейное равноускоренное движение.
Равноускоренным движением называется такое движение, при котором тело за равные промежутки времени изменяет свою скорость на одну и ту же величину. Движение, при котором скорость равномерно уменьшается, тоже считают равноускоренным (иногда его называют равнозамедленным).
Величины, участвующие в описании равноускоренного движения, почти все векторные. При решении задач формулы записывают обычно через проекции векторов на координатные оси. Если тело движется по горизонтали, ось обозначают буквой х, если по вертикали — буквой у.
Если векторы скорости и ускорения сонаправлены (их проекции имеют одинаковые знаки), тело разгоняется, т. е. его скорость увеличивается. Если же векторы скорости и ускорения противоположно направлены, тело тормозит.
Это конспект по теме «ЗАДАЧИ на Прямолинейное равноускоренное движение с решениями». Выберите дальнейшие действия:
- Перейти к теме: ЗАДАЧИ на Свободное падение тел с решениями
- Посмотреть конспект по теме КИНЕМАТИКА: вся теория для ОГЭ (шпаргалка)
- Вернуться к списку конспектов по Физике.
- Проверить свои знания по Физике (онлайн-тесты).
Основные понятия
Наука, изучающая механическое движение без учёта причин, его вызвавших, называется кинематикой. При перемещении в физике принимается, что любой объект состоит из множества одинаково движущихся материальных точек. Поэтому вместо того, чтобы рассматривать тело в целом, изучается только поведение одной точки.
Любое движение описывается рядом параметров. К основным из них относят:
- Траекторию — линию, по которой происходит перемещение в пространстве.
- Пройденное расстояние — путь, ограниченный начальными и конечными координатами.
- Координаты — изменение положения точки в пространстве относительно принятого начала.
- Скорость — быстрота изменения положения.
- Ускорение — нарастание скорости во времени.
Под перемещением понимают движение за некий промежуток времени, описываемый вектором: ∆r = r — r0. Направление вектора принимается от положения материальной точки в начальный момент, к изменению её расположения в установленный. Скорость же представляет вектор, определяющий направление перемещения и быстроту изменения движения относительно начальных координат, то есть какого-либо тела отсчёта.
Движение принято разделять на два вида: прямолинейное и криволинейное. В качестве примера для первого вида можно привести езду поезда на ровном участке железной дороги, бег спринтера на короткие дистанции, перемещение воды в прямой трубе. В реальности же чаще приходится сталкиваться с криволинейным перемещением, таким как падение тела, полёт футбольного мяча после удара.
Неравномерность перемещения обозначает изменение быстроты движения. Физическая величина, определяемая как отношение пройденного пути ко времени, затраченному на движение, называется средней скоростью. Этот параметр специально ввели для описания неравномерного движения в физике.
Тейлор против Гилбретов
Хотя для Тейлора изучение движения оставалось подчиненным изучению времени, внимание, которое он уделял технике изучения движения, продемонстрировало серьезность, с которой он рассматривал метод Гилбретса. Раскол с Тейлором в 1914 году из-за отношения к рабочим означал, что Гилбретам пришлось спорить вопреки профсоюзным деятелям, правительственным комиссиям и Роберту Хокси, который считал, что научный менеджмент невозможно остановить
На Гилбретов была возложена задача доказать, что исследование движения, в частности, и научный менеджмент в целом, увеличили промышленное производство способами, которые улучшили, а не умалили умственные и физические силы рабочих. Это была непростая задача, учитывая пропаганду, подпитывающую отчет Хокси, и последующее сопротивление профсоюзов научному менеджменту. Кроме того, авторитету Гилбретов и академическим успехам по-прежнему мешал Тейлор, который придерживался мнения, что исследования движения были не чем иным, как продолжением его работы.
Хотя и Тейлора, и Гилбретов продолжают критиковать за их соответствующую работу, следует помнить, что они писали во время промышленной реорганизации и появления крупных и сложных организаций с новыми формами технологий. Более того, приравнивание научного менеджмента просто к изучению времени и движения и, следовательно, контроля над трудом не только неверно понимает сферу научного управления, но также неверно истолковывает стимулы Тейлора к предложению другого стиля управленческой мысли.
Равноускоренное движение
Равноускоренное движение — это движение, при котором вектор ускорения не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту. Равномерное движение — частный случай равноускоренного движения с ускорением, равным нулю.
Рассмотрим случай свободного падения (тело брошено под уголом к горизонту) более подробно. Такое движение можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.
В любой точке траектории на тело действует ускорение свободного падения g→, которое не меняется по величине и всегда направлено в одну сторону.
Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y — равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.
Единицы измерения
Единицы скорости включают:
- метров в секунду (символ M S -1 или м / с), то Производные единицы СИ ;
- километров в час (условное обозначение км / ч);
- миль в час (обозначение mi / h или mph);
- узлы ( морские мили в час, обозначение kn или kt);
- футов в секунду (символ fps или ft / s);
- Число Маха ( безразмерное ), скорость, деленная на скорость звука ;
- в натуральных единицах (безразмерных) — скорость, деленная на скорость света в вакууме (символ c =299 792 458 м / с ).
РС | км / ч | миль / ч | морской узел | фут / с | |
---|---|---|---|---|---|
1 м / с = | 1 | 3 600 000 | 2,236 936 * | 1,943 844 * | 3,280 840 * |
1 км / ч = | 0,277 778 * | 1 | 0,621 371 * | 0,539 957 * | 0,911 344 * |
1 миль / ч = | 0,447 04 | 1,609 344 | 1 | 0,868 976 * | 1,466 667 * |
1 узел = | 0,514 444 * | 1,852 | 1,150 779 * | 1 | 1,687 810 * |
1 фут / с = | 0,3048 | 1.097 28 | 0,681 818 * | 0,592 484 * | 1 |
(* = приблизительные значения)
Не упустите!
Советую вам не упускать очень важные моменты. Когда вам дается задача, смотрите внимательно, в каких единицах измерения даны параметры. Автор задачи может схитрить. Напишет в дано:
Человек проехал по тротуару на велосипеде 2 километра за 15 минут. Не спешите сразу решать задачу по формуле, иначе у вас получится ерунда, а учитель ее вам не засчитает. Помните, что ни в коем случае нельзя делать так: 2 км/15 мин. У вас единица измерения получится км/мин, а не км/ч. Вам нужно добиться последнего. Переведите минуты в часы. Как это сделать? 15 минут – это 1/4 часа или 0,25 ч. Теперь можете смело 2км/0,25ч=8 км/ч. Теперь задача решена верно.
Вот так легко запоминается формула «скорость, время, расстояние»
Только соблюдайте все правила математики, обращайте внимание на единицы измерения в задаче. Если есть нюансы, как в рассмотренном чуть выше примере, сразу же переводите в систему единиц СИ, как положено
Памятка по математике для учащихся 4 класса по теме » Скорость, время, расстояние»
23 thoughts on “Расстояние, скорость, время”
ОЧЕНЬ суперский сайт! Давно добавила его в Избранное! Спасибо за Ваши труды! они очень-очень полезны! На самом деле незнание математики — это колоссально масштабная проблема. Миллионы людей ее НЕ понимают. И МАЛО кто может ее хорошо объяснить. Благодаря ВАМ — у людей есть шанс исправиться
тут имеет место неверная трактовка в самих учебниках на подобные задачи. Не указывается, двигались ли школьники с постоянной скоростью или она менялась. Ответом в итоге получается средняя скорость движения школьника по ходу всей дистанции…
Очень простое и понятное объяснение. Просто надо вызубрить формулы и подставить . Спасибо .
Формулы лучше понимать, а не зубрить
Честно этот человек заслуживает быть министром образования =). Человек,бескорыстно помогает людем. Респект вам уважаемый АДМИН.
Спасибо за ваш труд,вообще не понимаю математику,но если хоть чуть-чуть научусь,буду самая счастливая. Очень на работе и в жизни пригодится
Источник статьи: http://spacemath.xyz/rasstoyanie_scorost_vremya/
Примеры решения задач
Пример
Задание. Движение материальной точки А задано уравнением:
$x=2 t^{2}-4 t^{3}$ . Точка начала свое движение при
t=0 c.Как будет двигаться рассматриваемая точка по отношению к оси X в момент времени t=0,5 с.
Решение. Найдем уравнение, которое будет задавать скорость рассматриваемой материальной точки, для
этого от функции x=x(t), которая задана в условиях задачи, возьмем первую производную по времени, получим:
$$v=\frac{d x}{d t}=4 t-12 t^{2}(1.1)$$
Для определения направления движения подставим в полученную нами функцию для скорости v=v(t) в (1.1) указанный в условии момент
времении сравним результат с нулем:
$$v(t=0,5)=4 \cdot 0,5-12(0,5)^{2}=-1 \lt 0$$
Так как мы получили, что скорость в указанный момент времени отрицательна, следовательно, материальная точка движется против оси X.
Ответ. Против оси X.
Слишком сложно?
Формула скорости не по зубам? Тебе ответит эксперт через 10 минут!
Пример
Задание. Скорость материальной точки является функцией от времени вида:
$$v=10\left(1-\frac{t}{5}\right)$$
где скорость в м/с, время в c. Какова координата точки в момент времени равный 10 с, в какой момент времени точка будет на расстоянии
10 м от начала координат? Считайте, что при t=0 c точка началадвижение из начала координат по оси X.
Решение. Точка движется по оси X, cвязь координаты x и скорости движения определена формулой:
$$x=\int_{0}^{t} v d t=\int_{0}^{t} 10\left(1-\frac{t}{5}\right) d t=10 t-\frac{10 t^{2}}{2 \cdot 5}=10 t-t^{2}(2.1)$$
Для ответа на первый вопрос задачи подставим в выражение (2.1) время t=10 c, имеем:
$$x=10 \cdot 10-(10)^{2}=0(m)$$
Для того чтобы определить в какой момент времени точка будет находиться на расстоянии 10 м от начала координат
приравняем выражение (2.1) к 10 и решим, полученное квадратное уравнение:
$$
\begin{array}{c}
10 t-t^{2}=10(2.2) \\
t_{1}=5+\sqrt{15} \approx 8,8(c) ; t_{2}=5-\sqrt{15} \approx 1,13(c)
\end{array}
$$
Рассмотрим второй вариант нахождения точки на расстоянии 10 м от начала координат, когда x=-10. Решим квадратное уравнение:
$$10 t-t^{2}=-10(2.3)$$
При решении уравнения (2.3) нам подойдет корень равный:
$$t_{3}=5+6=11 (c)$$
Ответ. 1) $x=0 \mathrm{~m}$ 2) $t_{1}=8,8 \mathrm{c}, t_{2}=1,13 c, t_{3}=11 c$
Читать дальше: Формула средней скорости.
Взаимосвязь скорости, времени, расстояния
Скорость принято обозначать маленькой латинской буквой v, время движения – маленькой буквой t, пройденное расстояние – маленькой буквой s. Скорость, время и расстояние связаны между собой.
Если известны скорость и время движения, то можно найти расстояние. Оно равно скорости, умноженной на время:
s = v × t
Например, мы вышли из дома и направились в магазин. Мы дошли до магазина за 10 минут. Наша скорость была 50 метров в минуту. Зная свою скорость и время, мы можем найти расстояние.
Если за одну минуту мы прошли 50 метров, то сколько таких пятьдесят метров мы пройдем за 10 минут? Очевидно, что умножив 50 метров на 10, мы определим расстояние от дома до магазина:
v = 50 (м/мин)
t = 10 минут
s = v × t = 50 × 10 = 500 (метров до магазина)
Если известно время и расстояние, то можно найти скорость:
v = s : t
Например, расстояние от дома до школы 900 метров. Школьник дошел до этой школы за 10 минут. Какова была его скорость?
Скорость движения школьника это расстояние, которое он проходит за одну минуту. Если за 10 минут он преодолел 900 метров, то какое расстояние он преодолевал за одну минуту?
Чтобы ответить на этот, нужно разделить расстояние на время движения школьника:
s = 900 метров
t = 10 минут
v = s : t = 900 : 10 = 90 (м/мин)
Если известна скорость и расстояние, то можно найти время:
t = s : v
Например, от дома до спортивной секции 500 метров. Мы должны дойти до неё пешком. Наша скорость будет 100 метров в минуту (100 м/мин). За какое время мы дойдем до спортивной секции?
Если за одну минуту мы будем проходить 100 метров, то сколько таких минут со ста метрами будет в 500 метрах?
Чтобы ответить на этот вопрос нужно 500 метров разделить на расстояние, которое мы будем проходить за одну минуту, то есть на 100. Тогда мы получим время, за которое мы дойдем до спортивной секции:
s = 500 метров
v = 100 (м/мин)
t = s : v = 500 : 100 = 5 (минут до спортивной секции)
Понравился урок? Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Первые часы
Сначала было достаточно палочки, на которой каменным топором можно делать зарубки и тем самым отсчитывать прошедшие дни. Но это скорее был календарь, а не часы.
Первые и самые древние часы – солнечные. Их действие основано на изменении длины тени предметов по мере того, как солнце движется по небосводу. Такие часы представляли собой гномон – длинный шест, воткнутый в землю. Солнечные часы применялись в Древнем Египте и Китае. О них было доподлинно известно уже в 1200 году до нашей эры.
Солнечные часы в Китае
Затем появились водяные, песочные и огненные часы. Работа этих механизмов не была привязана к движению небесных светил. Долгое время водяные часы были главным инструментом для измерения времени.
Первые механические часы были изготовлены китайскими мастерами в 725 году нашей эры. Однако широкое распространение они получили относительно недавно.
В средневековой Европе механические часы устанавливались в башнях соборов и имели только одну стрелку – часовую. Карманные часы появились только в 1675 году (изобретение запатентовал Гюйгенс), а наручные – намного позже.
Первые наручные часы были исключительно женским аксессуаром. Они представляли собой богато украшенные изделия, точность хода которых отличалась огромными погрешностями. У уважающего себя мужчины не могло быть и мысли о том, чтобы носить наручные часы.
Как рассчитать маршрут между городами
Чтобы рассчитать расстояние между населенными пунктами, начните вводить название начального пункта вашего маршрута в поле «Город откуда». Из выпадающего списка выберите нужный город. Таким же образом заполните поле «Город куда» и нажмите на кнопку «Рассчитать».
Слово «город» используется только как название полей формы, здесь можно указать любой населенный пункт и сделать, например, расчет расстояния между селами или поселками и т.п.
В результате вы получите кратчайшее расстояние между двумя населенными пунктами, которые вы указали. Маршрут движения отобразится на карте и в таблице. В таблице перечисляются участки маршрута (трассы) и указывается, какое расстояние между городами по автодорогам на каждом отрезке проложенного маршрута, а также время и общая длина пути.
Прокладка маршрута по карте
Расчёт расстояния и топлива
Как уже упоминалось выше, сервис позволяет не только определить расстояние между двумя пунктами непосредственно, но и проложить маршрут с промежуточными точками и исключениями, указанными вами. Чтобы рассчитать маршрут движения на автомобиле по вашим параметрам, раскройте окно «Дополнительные настройки расчета расстояний».
Расчет автомобильных расстояний с дополнительными параметрами
Заполните нужные вам поля дополнительных настроек.
Здесь можно указать страны и города, которые вы хотите объехать, тогда они будут исключены из конечного маршрута. А также перечислить через какие населенные пункты нужно проехать, чтобы они были добавлены в расчет автомобильного маршрута. Оставьте эти поля пустыми, если нужно лишь узнать расстояние между двумя городами, просто укажите пункты отправления и прибытия в соответствующих полях формы.
Расчет расстояния автодороги между городами
В окне дополнительных параметров можно изменить скорость движения для разных типов дорог, чтобы получить более точное время в пути.
Расчет маршрута онлайн
Как рассчитать расход топлива автомобиля? Заполните поля формы своими данными, укажите в них средний расход топлива вашей машины и цену на топливо. Сервис посчитает объем и стоимость необходимого на этот маршрут топлива и отобразит в таблице расчет расхода бензина или дизельного топлива в литрах и рублях.
Расчет расхода топлива онлайн
Ну и последняя настройка, она позволяет рассчитать оптимальный маршрут по времени или протяженности. Установите нужное вам значение: «Самый быстрый маршрут», чтобы проложить дорогу с минимальным временем в пути или «Самый короткий маршрут», чтобы рассчитать кратчайший маршрут по расстоянию.
Расчет маршрута движения
После того как, дополнительные параметры заданы, снова нажмите кнопку «Рассчитать», чтобы рассчитать расстояние и время по новому маршруту.
Если вы хотите удалить из своего маршрута конкретные участки трассы, поставьте напротив них галочку в таблице с расчетом маршрута и нажмите кнопку «Исключить отмеченное». Онлайн программа расчета расстояний между городами проложит маршрут в обход указанных трасс.
Расстояние в километрах между городами
Онлайн сервис «Расчет расстояния между городами» предлагает расчет расстояний между городами по автомобильным дорогам РФ, Европы и СНГ. Он позволяет за считанные секунды рассчитать расстояние и расход топлива, проложить кратчайший маршрут и при необходимости распечатать полученный результат.
Другие веб-сервисы для водителей авто:
- Проверить и оплатить штрафы ГИБДД онлайн
- Пройти бесплатный тест ПДД
- Подобрать размер шин и дисков в шинном калькуляторе
Скорость, время, расстояние
Скорость движения – это расстояние, пройденное за единицу времени.
Единицей времени является 1 секунда, 1 минута или 1 час.
Чтобы определить скорость движения, нужно использовать величины – расстояние и время.
Чтобы найти скорость, нужно расстояние разделить на время.
В качестве единиц измерения скорости мы будем пользоваться единицами длины и единицами времени. Обычно используют такие единицы скорости, как метр в секунду, метр в минуту, километр в час и другие, а записывают так: м/с, м/мин, км/ч
Обратите внимание, что предлог “в” в математике заменили чёрточкой “ / ”
Например, скорость страуса – 7 км/ч.
Прибор для измерения скорости: спидометр.
Чем меньше времени затрачено на дорогу, тем больше скорость движения.
Чем меньше скорость движения, тем больше времени требуется на дорогу.
Чтобы найти время, нужно расстояние разделить на скорость.
Чтобы найти расстояние, нужно скорость умножить на время.
При решении задач на движение стоит помнить, что при движении навстречу друг другу скорости складываются, а при движении друг за другом – вычитается.
Складывая две скорость при движении в противоположных направлениях, мы получаем скорость, с которой объекты удаляются друг от друга. Её мы будем называть скоростью удаления.
Место встречи всегда ближе к пункту, из которого вышел пешеход, у которого скорость меньше.
Источник статьи: http://budu5.com/manual/chapter/3550