Единицы измерения радиации. единицы измерения проникающей радиации

Содержание материала

Особенности измерения альфа, бета и гамма излучений

Теперь разберем разновидности излучений, которые можно измерять с помощью дозиметра или индикатора радиоактивности. Для человека в быту интерес представляют альфа, бета и гамма излучения. Только некоторые приборы могут похвастаться чувствительностью к трем видам излучений. К сожалению, в большинстве дозиметров, чтобы измерить альфа- или бета- излучение, необходимо проводить предварительные процедуры или замеры радиации. Из всей массы дозиметрических приборов, нужно выделить дозиметр RADEX RD1008, который может одновременно измерять два вида излучений, бета- и гамма . В приборе RADEX RD1008 применяются два датчика радиации, один БЕТА-2 чувствителен к альфа-, бета- и гамма излучениям, а второй БЕТА-2М только к гамма- излучению.

Следует помнить, что наиболее опасным считается гамма излучение. При этом и обнаружить его легче. Чтобы проверить на радиацию объект или предмет правильно и максимально точно, нужно прибор подносить как можно ближе к объекту, почти вплотную. Необходимо также следить, чтобы дозиметр не “испачкался”, например, если пыль или другой мелкодисперсный объект исследований будет с повышенным уровнем радиоактивности, и он попадёт незаметно на корпус дозиметра, тогда показатели будут неверными.

Как же определить альфа излучение? Измерение уровня радиации альфа- излучения удобнее всего осуществлять с помощью прибора RADEX RD1008, поскольку в нем предусмотрен датчик радиации, который чувствует альфа- излучение. Для этого нужно воспользоваться самой обычной бумагой, сначала произвести измерения накрыв объект листком бумаги, а потом провести измерение того же объекта без бумаги. Дело в том, что бумага останавливает альфа частицы. Если в ходе измерения вы выявили большую разницу в полученных показателях, то это означает наличие существенного количества альфа частиц в образце.

Как быстро найти радиоактивный предмет?

Если прибор фиксирует повышенный уровень радиации, значит, есть и источник радиации. Как  выявить радиоактивный предмет? Для поисковой задачи идеально подходит дозиметр RADEX ONE, поскольку у него есть специальный режим измерения СРМ, в котором фиксирует количество радиоактивных частиц, а не делает пересчеты и не просчитывает среднее значение. Поэтому прибор быстро реагирует на малейшие изменения показателей радиоактивности, при попадании в аномальную зону. Наиболее удобно проводить измерение радиации с включенным звуковым сигналом в режиме поиска. Для того чтобы его включить, следует:

  1. зайти в меню, выбрать нужный режим, в данном случае это будет «CPM»;
  2. подтвердить функцию с помощью кнопки «выбор».

Искать место расположения источника излучения нужно перемещая включенный прибор над поверхностью исследуемого объекта. При этом ориентироваться стоит на частоту звуковых сигналов (в настройках меню: порог – отключен, звонок – включен). Чем ближе вы приближаетесь к источнику, тем частота будет возрастать, а по мере удаления – убывать.

Определяем уровень радиации в продуктах питания

Что касается продуктов питания, то источниками радиоактивного излучения могут быть дикорастущие ягоды, грибы и растения. За счет особой пористой структуры именно грибы способны особенно быстро накапливать радиацию в больших количествах

Всем грибникам необычайно важно иметь дозиметр при каждом походе в лес

Если выявлено превышение дозы хотя бы на 50% больше естественного фона, то лучше пройти мимо. Подобные измерения можно производить на рынке или в магазине. Для определения уровня радиации продуктов питания, нужно только приблизить включённый дозиметр к объекту исследования на расстояние около 1 см. Если приходится иметь дело с жидкостью, то исследование нужно проводить над открытой поверхностью жидкости. Нужно следить, чтобы вода не попала на прибор. Для этого можно использовать полиэтиленовый пакет, но не больше одного слоя.

Какие последствия могут быть от облучения

При воздействии радиации на человека возникает облучение. Оно проявляется в виде острой лучевой болезни, которой свойственны разные степени тяжести. Проявляется она уже при облучении дозой радиации, которая равна одному зиверту. Повышение дозы до двух зивертов уже способно увеличить риск развития онкологии, а при трех зивертов существенно возрастает риск летального исхода.

Облучение способно вызывать появление лучевых ожогов. При очень больших дозах может происходить отмирание кожи, а также существенные повреждения костей и мышц. В последнем случае лечение будет значительно сложнее тепловых или химических ожогов. Помимо ожогов могут проявляться проблемы в виде нарушения обменных процессов, инфекционные осложнения, лучевая катаракта и даже бесплодие.

Возможен также стохастический эффект, при котором облучения проявляются спустя длительный промежуток времени. Проявляется он в виде раковых опухолей, которые возникают у облученных людей крайне часто. Некоторые ученые считают, что здесь имеют место быть также и генетические эффекты, но при проведении исследований, связанных с 80 тысячами детей, которые родились у японцев, переживших атомную бомбардировку Нагасаки и Хиросимы, не было выявлено увеличение уровня наследственных заболеваний.

Как уже говорилось выше, по статистике, радиация способна повышать уровень онкологических заболеваний, но прямое влияние облучения при этом выявить очень сложно. Ведь рак может быть спровоцирован деятельностью вирусов, химических веществ и т. д. К примеру, после бомбардировки Хиросимы проявление первых побочных эффектов произошло спустя десяток лет.

Из чего состоит дозиметр

Корпус — ударопрочный. Выполнен и высококачественного пластика. На передней панели располагаются кнопки и матричный ЖКИ. С торцевой части устанавливается USB разъем для удобного считывания результатов с помощью смартфона или персонального компьютера. Также есть светодиодный индикатор и отверстие звуковой сигнализации.


На задней части корпуса производитель указывает серийный номер модели и другие условные обозначения

Устройство дозиметра может включать:

  • несколько детекторов для измерения разных типов излучения;
  • съемные фильтры;
  • счетное устройство;
  • систему индикации дозы.

Главной деталью метрологического прибора считается детектор излучения. Он наделен особенностью преобразовывать излучение в электрический сигнал, который удобно обрабатывать.

Также устройство может иметь умножитель напряжения, разделительные конденсаторы, одновибраторы, преобразователи, модуляторы, резонаторы, электронные и управляющие блоки. Газонаполненная камера чаще представляет собой счетчик Гейгера-Мюллера. Он отличается простотой и малой стоимостью.

Кристаллы могут быть органическими и неорганическими. Устройство дозиметра включает твердотельные полупроводниковые детекторы. Главные плюс — компактность, использование для контроля излучения любого вида. Но точность, которой обладает твердотельный дозиметр радиации, — низкая.

Лучшие производители дозиметров радиации

Фирм производителей достаточно много. Чтобы не ошибиться в выборе и не обзавестись поддельным устройством, следует всегда проверять подлинность изделия. Сделать это можно одним способом, попросить у продавца всю документацию и сертификаты.

Конкурентов на мировым рынке немало, но путем изучения отзывов и продукции, экспертам удалось отобрать лучших производителей:

  • Anmez;
  • Radex;
  • Soeks;

Они предлагают модели хорошего качества. Продают как профессиональные, так и бытовые устройства.

Ведущие производители оснащают бытовые модели дополнительным функционалом — анализатором качества воды, нитратомером. Это делает модель более функциональной и востребованной.

Опасные дозы облучения

При 1 зиверте человек испытывает негативные симптомы. При трех – уже лысеет и получает различные расстройства, вплоть до полового бессилия. На фоне в 3,5–5 Зв умирает половина больных, причем за короткий срок – 25–30 дней. Более 500 Зв – неминуемая смерть за 2 недели, почти со 100 % вероятностью. Сколько максимально нужно для летального исхода – значение индивидуальное. СанПиН считает нормой 0,25–0,4 мкЗв/час в жилом помещении.

Нормативы радиационной безопасности

Норма радиации участка под застройку – не более 0,3 мкЗв/час. Иначе в квартирах, построенных на нем, можно будет за несколько месяцев выбрать годовую норму.

Чем пользуются эксперты при замере радиации?

Перечень приборов и устройств, которые использует радиационная экспертиза, широк. От портативных дозиметров до сложных лабораторных приборов.

Счетчик Гейгера с трубкой или зондом Гейгера-Мюллера

Это газонаполненное устройство, которое при подаче высокого напряжения создает электрический импульс, когда излучение взаимодействует со стенкой или газом в трубе.

MicroR Meter с детектором йодида натрия

Эти приборы чаще всего имеют схемы различения верхней и нижней энергии и при правильном использовании в качестве одноканальных анализаторов могут предоставлять информацию о энергии гамма-излучения и идентифицировать радиоактивный материал. Если у инструмента есть динамик, импульсы также дают слышимый щелчок, полезная функция при поиске потерянного источника.

Распространенными единицами считывания являются микрорентгены в час (мкР/ час) и/или число импульсов в минуту. Детекторы йодида натрия могут использоваться с ручными инструментами или большими стационарными радиационными мониторами.

Портативный многоканальный анализатор

Эти портативные инструменты могут автоматически определять и отображать тип присутствующих радиоактивных материалов. При работе с неизвестными источниками излучения это очень полезная функция.

Ионизационная (ионная) камера

Это заполненная воздухом камера с электропроводящей внутренней стенкой и центральным анодом и относительно низким приложенным напряжением. Предназначена для обеспечения точного измерения поглощенной дозы в воздухе, которая с помощью соответствующих коэффициентов преобразования может быть связана с дозой в ткани.

Нейтронный счетчик REM с пропорциональным счетчиком

Пропорциональная контртрубка из трифторида бора или гелия-3 представляет собой газонаполненное устройство, которое при подаче высокого напряжения создает электрический импульс, когда нейтронное излучение взаимодействует с газом в трубке. Благодаря использованию электронных схем дискриминатора, отдельно могут быть измерены различные типы излучения.

Радоновые детекторы

Для измерения радона в домашних условиях или на производстве (например, урановые рудники) используется ряд различных методов. Они варьируются от сбора продуктов распада радона на воздушном фильтре до подсчета, экспонирования угольной канистры в течение нескольких дней и выполнения гамма-спектроскопии для поглощенных продуктов распада, экспонирования электретной ионной камеры и считывания, а также длительного воздействия CR-39 пластиков с последующим химическим травлением и подсчетом альфа-треков. Все эти подходы имеют различные преимущества и недостатки, которые следует оценить перед использованием.

Наиболее распространенные лабораторные инструменты:

Жидкостный сцинтилляционный счетчик

Это традиционный лабораторный прибор с двумя противолежащими ФЭУ, которые видят флакон, содержащий образец и жидкую сцинтилляционную жидкость, или коктейль. Когда образец испускает излучение (часто бета с низкой энергией), сам коктейль, будучи детектором, вызывает импульс света.

С использованием экранирования, охлаждения ФЭУ, выделения энергии и такого подхода к подсчету совпадений можно добиться очень низкого фонового подсчета и, таким образом, низкого минимума обнаруживаемой активности. Большинство современных блоков имеют возможность многократной выборки и автоматического сбора, сокращения и хранения данных.

Пропорциональный счетчик

Обычным лабораторным прибором является стандартный пропорциональный счетчик с поддоном для подсчета проб и камерой, а также потоком аргона / метана через счетный газ. В большинстве устройств используется очень тонкое (микрограмм/см2) окно, а в некоторых нет окон.

Экранирующие и идентичные защитные камеры используются для уменьшения фона, и, в сочетании с электронной дискриминацией, эти инструменты могут различать альфа- и бета-излучение. Имеют возможность многократной выборки и автоматического сбора, сокращения и хранения данных. Такие счетчики часто используются для подсчета образцов мазка/протирки или воздушного фильтра.

Советы по выбору

Перед тем, как выбрать дозиметр, следует решить, с какой именно целью он будет использоваться. Определить повышенный радиационный фон сможет любая из вышеперечисленных моделей. Если это единственная задача, выбор дозиметра можно основывать исключительно на стоимости.

Существует еще одна классификация приборов, по типу их работы. Перед покупкой полезно знать, какой дозиметр будет соответствовать поставленным задачам.

  1. Беспороговые индикаторы с низкой чувствительностью — таким дозиметром можно определить наличие радиоактивного фона от какого-либо предмета, но не более того.
  2. Сигнализаторы – это те же индикаторы, но с пороговыми значениями, о которых дозиметр информирует звуковым или вибро-сигналом (например, Нейва-ИР-001).
  3. Измерители оснащают более чувствительными и точными датчиками радиации. Они предоставляют пользователям подробную информацию о зарегистрированных изменениях излучения. Это оптимальный дозиметр для измерения радиоактивности предметов, например, МКС-03СА можно использовать для исследования строительных материалов или ювелирных изделий.
  4. Устройства поиска используют для обнаружения источников радиации. Они не так точны, как измерители, но очень чувствительны к любым изменениям фона. В качестве детектора, как правило, в них используют сцинтилляционные кристаллы. Говоря простым языком, они на расстоянии улавливают радиацию, а колебания позволят определить направление к источнику. Сцинтилляционные дозиметры реагируют на гамма-излучения, в редких случаях – на «высокую бету».
  5. Спектрометры – это более сложная техника, помимо источника излучения они способны определить тип изотопа, вызвавшего повышение уровня радиации. Приборы такого уровня дороже бытовых раз в 10, взять, к примеру, лазерный дозиметр ЛД-07.

Обращайте внимание на верхний порог измерений — его рекомендованное значение от 10 000 мкР/ч. Приборы с малым верхним значением могут просто не определить высокий уровень излучения, при этом индикатор либо вообще его не регистрирует, либо в разы занижает реальные показатели, что крайне опасно для человека

Если выбор стоит между СБМ-20 и торцевым слюдяным датчиком – выбирайте второе, во-первых, они более чувствительны, а во-вторых, способны регистрировать «мягкое бета-излучение». Единственный их недостаток – хрупкость, обращаться с ними нужно аккуратно, исключая резкие перепады давления, удары, вибрации, пары от жидкостей или соприкосновение со слюдой.

Сцинтилляторные «поисковики» в бытовых условиях требуется крайне редко

Если такая необходимость есть, нужно обратить внимание на размер сцинтилляционного кристалла: чем он больше, тем чувствительней прибор

Откажитесь от приобретения списанных военных дозиметров, выбирать нужно среди современных моделей. В лучшем случае – прибор не будет работать, в худшем – может быть опасным. Различные вариации с пин-диодами или приложения для смартфонов имеют некое реальное основание на звание «дозиметр», но на практике они бесполезны.

Как измерить радиацию в домашних условиях

Достоверную информацию о радиационном фоне можно получить лишь с помощью специальных приборов-дозиметров и радиометров.

Между этими приборами есть существенные различия. Чтобы измерить уровень радиации в квартире, необходим дозиметр. Именно на дисплее этого прибора отразится информация об эффективной дозе или мощности ионизирующего излучения за конкретный промежуток времени в мкР/час.

Радиометр позволяет измерить загрязнение купленных в магазине или на рынке продуктов или принесённых из леса грибов.

Существуют приборы (дозиметры-радиометры), позволяющие выполнять обе эти функции — измерять дозу и её мощность, а также выполнять измерение радиоактивности конкретного образца. Бытовые дозиметры могут отличаться по различным параметрам. Диапазон измерений этих устройств находится обычно в пределах от 10 до 10 тыс. мкР/час.

Как ещё можно проверить радиацию в квартире, не имея в своём распоряжении такого прибора? Существуют компании, профессионально занимающиеся проверкой на радиацию различных объектов — от стройматериалов, автомобилей, до квартиры и дома. Проверка на радиацию квартиры включает:

  • измерение количества газа радона;
  • проверка всей квартиры на источники радиации;
  • выявление таких источников и их устранение.

измерение радона Стены зданий защищают нас от радиации примерно на 90%. Во сколько раз ослабляют ионизирующее излучение стены кирпичного дома и стены, возведённые из других материалов? Кирпичная кладка уменьшит его интенсивность в 10, деревянные стены в 2, а бетон в 40–100 раз.

Во внутренней отделке дома все чаще применяют натуральные материалы: гранит и мрамор. Несмотря на то что уровень излучения гранита невысок, все же не стоит облицовывать им камин, поскольку при нагреве излучение усиливается. А вот для внешней отделки дома он весьма приемлем. Для облицовки камина более уместно использование мрамора.

В зависимости от содержания радионуклидов, природные стройматериалы делятся на 3 класса. Для строительства жилых помещений следует использовать более дорогие, но более безопасные материалы первого класса.

Принцип работы прибора

В неактивном выключенном состоянии прибор находится в режиме микропотребления, при котором энергия расходуется только на отчет времени – по объему затрат это единицы мкА. После запуска устройство начинает выдавать сигналы напряжения, параллельно активируя функцию детектора, который непосредственно отвечает за измерение ионизирующего излучения.

В процессе оценки величины импульсного напряжения встроенный микропроцессор формирует интервалы и поддиапазоны реального замера на текущий момент. В зависимости от модели дозиметры-радиометры поддерживают разные режимы работы. Наиболее развитые технически устройства позволяют программировать диапазоны с пороговыми значениями, при которых происходит срабатывание. Сам же принцип определения величины излучения, в свою очередь, зависит от типа детектора, которые стоит рассмотреть отдельно.

Сколько стоит дозиметр и где его можно купить?

Стоимость персонального радиометра зависит от следующих условий:

  • Бренда производителя;
  • Габаритных размеров;
  • Чувствительности прибора по отношению к ионизирующим потокам;
  • Длительности срока эксплуатации.

На ресурсе Яндекс Маркета представлен обзор дозиметров для измерения излучения с различной ценовой категорией:

Дозиметры радиации можно приобрести в следующих интернет – магазинах: Dicmarket.ru, la crosse technology, MedGadgets.ru, MyDozimetr.RU, OZON.ru, SITITEK, TopRadar.ru, Антирадара-Стрелка.рф, ТехноМед и др. Выгоднее всего купить дозиметр на AliExpress. В этом интернет – магазине самый бюджетный вариант дозиметра в виде шариковой ручки стоит всего 223 рубля.

Стоит отметить, что качественные дозиметры будут стоить не малых денег. Дешевые модели могут не оправдать ожиданий: показания могут быть поверхностными с высокой степенью погрешности. А срок службы таких устройств может достигать не более одного дня.

Как мерить: нормы радиации

Сначала изучите пошаговую инструкцию о том, как измерить радиацию (входит в комплект поставки). Перед началом работы не забудьте сбросить предыдущие показания и, если требуется, протереть прибор. Ориентироваться в цифрах помогут три нормативных показателя:

Дозы, негативно воздействующей на человека;

Радиационный фон на местности может поменяться несколько раз. Всегда придерживайтесь установленных нормативов:

Не более 50 микрорентген (или 0,5 микрозиверт) в час – допустимая доза;

20 микрорентген (0,2 микрозиверт) в час – абсолютно безопасная для человека доза;

100-700 мЗв – максимально допустимый порог радиации, накапливаемый в течение жизни.

Дозиметры различают по типу измеряемого излучения. Встречаются модели для определения уровня альфа-, бета-, гама излучения. Универсальные, с несколькими видами счетчиков, рассчитанные на измерения всех трех видов радиации, производятся редко. Каким прибором измеряют каждый вид радиации – информация следует.

Как мерить β и γ излучение

Универсальный дозиметр с двумя счетчиками Гейгера для измерения трех видов излучения – бета/гамма/рентгеновского – RADEX ONE.

Гамма лучи считаются самыми опасными, но обнаружить их проще. Поднесите прибор как можно ближе к предмету. Следите за тем, чтобы на аппарат не попала пыль: посторонние мелкодисперсные вещества повлияют на результат. Он не будет корректным.

Как мерить альфа-излучение

Дозиметр-радиометр для измерения всех трех видов излучения – RADEX RD1008. Возьмите обычный лист бумаги, покройте им проверяемую поверхность. Во втором цикле выполните замеры без бумаги. Если параметры сильно отличаются, значит источник «фонит» альфа лучами (на помощь приходит свойство бумаги удерживать α-излучение).

Радиация в продуктах питания

Опасные дозы излучения могут быть в любых продуктах. Чаще заражаются грибы, ягоды, дикорастущие растения, фрукты, мясо. Отправляясь в лес, на рынок, в магазин за покупками, желательно взять с собой карманный дозиметр. Как измерить уровень радиации? – Удостовериться в безопасности продуктов просто – поднесите аппарат близко к источнику, посмотрите на экран, сравните с допустимыми нормами радиации. Если параметр превышен более чем на половину, продукт брать не стоит.

Как проверить уровень радиации в квартире

Настоящим и будущим новоселам полезно знать, как измерить радиацию в квартире. Для этого пройдитесь с устройством в руках по всему объекту. Если аппарат укажет на увеличение дозы примерно на 0,3 мк3в/час, попробуйте приблизить дозиметр к подозрительному источнику, и вновь отодвинуться к середине. Если показания будут скакать, значит в стене имеется скрытый излучатель.]

Измеряем радиацию в походе

Чем измеряют уровень радиации в окружающей среде? – Таким же радиометром. Непременно возьмите прибор в поход, на экскурсию. Излучать радиацию может вода, земля, камни. Иногда причиной увеличения нормы становится ветер с промзоны или минералы в горах. Прежде чем ставить палатки, делать привал, раскладываться на пикник, выполните замеры. Обезопасьте себя и близких.

Навигация по статье:

Космическое излучение

Космическое излучение — это поток элементарных частиц, излучаемых космическими объектами в результате их жизни или при взрывах звезд.

Источником космического излучения в основном являются взрывы «сверхновых», а также различные пульсары, черные дыры и другие объекты вселенной, в недрах которых идут термоядерные реакции. Благодаря непостижимо большим расстояниям до ближайших звезд, которые являются источниками космического излучения, происходит рассеивание космического излучения в пространстве и поэтому падает интенсивность (плотность) космического излучения. Проходя расстояния в тысячи световых лет, на своем пути космическое излучение взаимодействует с атомами межзвездного пространства, в основном это атомы водорода, и в процессе взаимодействия теряют часть своей энергии и меняют свое направление. Несмотря на это, до нашей планеты все равно со всех сторон доходит космическое излучений невероятно высоких энергий.

Космическое излучение состоит:

  • на 87% из протонов (протонное излучение)
  • на 12% из ядер атомов гелия (альфа излучение)
  • Оставшийся 1 % — это различные ядра атомов более тяжелых элементов, которые образовались при взрыве звезд, в ее недрах, за мгновение до взрыва
  • Так же в космическом излучении присутствуют в очень небольшом объеме — электроны, позитроны, фотоны и нейтрино

Все это продукты термоядерного синтеза происходящего в недрах звезд или последствия взрыва звезд.

Свой вклад в космическое излучение вносит ближайшая к нам звезда — Солнце. Энергия излучения от Солнца на несколько порядков ниже, чем энергия космического излучения, приходящего к нам из глубин космоса. Но плотность солнечной радиации выше плотности космического излучения, приходящего к нам из глубин космоса.

Состав излучения от солнца (солнечная радиация) отличается от основного космического излучения и состоит:

  • на 99% из протонов (протонное излучение)
  • на 1 % из ядер атомов гелия (альфа излучение)

Все это продукты термоядерного синтеза проходящего в недрах Солнца.

Как мы видим, космическое излучение состоит из наиболее опасных видов радиоактивного излучения — это протонное и альфа излучение.

Если Земля не обладала бы газовой атмосферой и магнитным полем, то шансов у биологических видов на выживание просто бы не было

Но благодаря магнитному полю Земли, большая часть космического излучения отклоняется магнитным полем и просто огибает Земную атмосферу проходя мимо. Оставшаяся часть космического излучения, проходя сквозь атмосферу Земли, взаимодействуя с атомами газов атмосферы, теряет свою энергию. В результате множественных атомных взаимодействий и превращений до поверхности Земли вместо космического излучения, состоящего из протонного и альфа излучения, доходят потоки менее опасных и обладающими на порядки меньшими энергиями — это потоки электронов, фотонов и мюонов.

Что получаем в итоге?

В итоге, космическое излучение проходя защитные механизмы Земли, не только теряет почти всю свою энергию, но и претерпевает физическое изменение в процессе ядерного взаимодействия с газами атмосферы, превращаясь в фактически безопасное, обладающее низкой энергией излучение в виде электронов (бета излучение), фотонов (гамма излучение)и мюонов.

В пункте 9.1 МУ 2.6.1.1088-02 указано нормативное значение эквивалентной дозы радиации получаемой человеком от космического излучения, это

0,4 мЗв/год или

400 мкЗв/год или

0,046 мкЗв/час