Как выбрать микроскоп для ребенка: практические советы и лучшие модели

Содержание материала

Что в комплекте?

Про объективы…

Разрешающая способность микроскопа и степень коррекции оптических искажений определяются, в основном, характеристиками объектива. (Для любознательных: на разрешение влияет также и применяемый метод микроскопии. К примеру, при работе с иммерсией возможности микроскопа «видеть» детали картинки существенно увеличиваются.)

На каждом объективе указана числовая апертура (N.A.) – например, 0.65, 1.25 и т.д

Чтобы на 100% использовать разрешающую силу объективов, важно подбирать их так, чтобы N.A. активного объектива было не больше апертурного числа конденсора

Наиболее заметные в микроскопических исследованиях виды оптических искажений – хроматические и сферические аберрации и кривизна поля зрения, хотя специалисты различают их значительно больше. Оптическую систему, которая не страдала бы в какой-то мере хоть от одной из аберраций, вообразить сложно. Поэтому, говоря о качестве оптики, подразумевают лишь уровень коррекции неизбежно возникающих искажений.

В бюджетных моделях детских микроскопов установлены простейшие линзовые объективы без коррекции; в самых дешевых из них линзы изготовлены даже не из стекла, а из пластика. Такие приборы стоит выбирать только из соображений экономии бюджета. Далее будем говорить только об оптике со стеклянными линзами.

Итак, по степени исправления аберраций объективы микроскопов делятся на:

  • ахроматические (хроматизм скорректирован для зелено-желтого спектра);
  • апохроматические (скорректированы хроматические и сферические аберрации для трех длин волны);
  • планахроматические (ахроматы с 90%-ной коррекцией кривизны поля);
  • планапохроматические (аналогично, исправленные на 90% апохроматы).

Есть еще промежуточные стадии (полу-планахромат и т.д.), но останавливаться на них мы не будем.

Для общеознакомительных и учебных целей будет достаточно набора ахроматических объективов. Старшеклассникам, претендующим на поступление в естественно-научные вузы, рекомендуем выбирать оптику «на вырост» – класса апохромат или полупланапохромат. Конечно, план-объективы обеспечивают наилучшее качество картинки, но они существенно дороже, и поэтому применяются только в науке и медицинской диагностике, да и то не всегда.

Что касается увеличения: разумная идея – укомплектовать микроскоп объективами кратности 4x, 10x, 40x и 100x. С помощью такого набора можно выполнять и наблюдение на большом увеличении, и обзор обширных участков в поисках объекта для детального исследования.

…и окуляры

Переходим к обсуждению окуляров. Микроскоп обязательно должен быть укомплектован парой (для трино- и бинокулярных) или одним окуляром кратности 5-10х. Для работы на увеличениях более 1000х не помешает иметь еще 15- или 20-кратные окуляры. Помимо увеличения, важнейшими характеристиками окуляров являются поле зрения, удаление зрачка и посадочный диаметр.

Поле зрения: по этому признаку окуляры делятся на стандартные, широкопольные (WF), экстра-широкопольные (EWF) и ультра-широкопольные (UWF). Последние неоправданно дороги и смогут проявить себя только в связке с план-объективами. С апохроматическими объективами даже WF-окуляры обеспечат более чем достойную картинку.

Удаление зрачка: чем оно больше, тем на большее расстояние можно отвести от окуляра глаз при наблюдении. Если вы носите очки и не планируете снимать их по время работы, лучше приобретать окуляры с удалением (выносом) не менее 15 мм.

Посадочный диаметр окуляра должен соответствовать диаметру окулярного тубуса. Это стандартная величина, и ошибиться при подборе тут сложно: наиболее распространены диаметры 23.2, 30 и 30.5 мм.

Замечание Оптические системы окуляров – так же, как и объективов – проектируются с учетом коррекции аберраций. Но придавать этим характеристикам большое значение при выборе комплекта окуляров не советуем.

Увеличение

Первое, на что обращает внимание большинство выбирающих микроскоп людей — это его увеличение. Но, хотя считается, что большая кратность — это хорошо, на самом деле ситуация немного другая

Чем больше увеличивает оптика, тем меньше становится поле зрения. И, получая большую картинку, исследователь может не понять, что именно он рассматривает на образце.

Для того чтобы лучше понять, какой микроскоп подойдет ребенку, стоит познакомиться с понятием полезного увеличения. Термин означает такую кратность, после превышения которой прибор работает как обычная лупа — то есть увеличивает, но не добавляет деталей.

Увеличения в 1000 раз может достигать профессиональный прибор, цена которого слишком большая для его покупки ребенку. А вот уже 400-600х хватит и для простых исследований, и для школьных лабораторных — и даже для пайки радиодеталей, при которой тоже может пригодиться недорогой микроскоп.

Иммерсионные жидкости

Иммерсионные жидкости необходимы для увеличения числовой апертуры и соответственно повышения разрешающей способности иммерсионных объективов, специально рассчитанных для работы с этими жидкостями и, соответствующим образом, маркированными. Иммерсионные жидкости, помещенные между объективом и препаратом, имеют более высокий показатель преломления, чем воздух. Поэтому, отклоненные мельчайшими деталями объекта лучи света, не рассеиваются, выходя из препарата, и попадают в объектив, что приводит к повышению разрешающей способности.

Существуют объективы водной иммерсии (маркированные белым кольцом), масляной иммерсии (черное кольцо), глицериновой иммерсии (желтое кольцо), монобромнафталиновой иммерсии (красное кольцо). В световой микроскопии биологических препаратов применяются объективы водной и масляной иммерсии. Специальные кварцевые объективы глицериновой иммерсии пропускают коротковолновое ультрафиолетовое излучение и предназначены для ультрафиолетовой (не путать с люминесцентной) микроскопии (то есть для изучения биологических объектов, избирательнопоглощающих ультрафиолетовые лучи). Объективы монобромнафталиновой иммерсии в микроскопии биологических объектов не используются.

В качестве иммерсионной жидкости для объектива водной иммерсии используется дистиллированная вода, масляной иммерсии — природное (кедровое) или синтетическое масло с определенным показателем преломления.

В отличие от других иммерсионных жидкостей масляная иммерсия является гомогенной, так как имеет показатель преломления равный или очень близкий показателю преломления стекла. Обычно этот показатель преломления (n) рассчитан для определенной спектральной линии и определенной температуры и указывается на флаконе с маслом. Так, например, показатель преломления иммерсионного масла для работы с покровным стеклом для спектральной линии D в спектре натрия при температуре =20°С равен 1,515 (nD 20 = 1,515 ), для работы без покровного стекла (nD 20 = 1,520).

Для работы с объективами-апохроматами нормируется также дисперсия, то есть разность показателей преломления для различных линий спектра.

Использование синтетического иммерсионного масла предпочтительнее, поскольку его параметры более точно нормируются, и оно в отличие от кедрового, не засыхает на поверхности фронтальной линзы объектива.

Учитывая вышесказанное, ни в коем случае нельзя пользоваться суррогатами иммерсионного масла и, в частности, вазелиновым маслом. При некоторых способах микроскопии для увеличения апертуры конденсора, иммерсионная жидкость (чаще дистиллированная вода) помещается между конденсором и препаратом.

С иммерсионным маслом
Без иммерсионного масла

Школьные модели

Школьные микроскопы, несмотря на более высокое качество изображения, тоже можно купить за сумму около 4000 тысяч. Хотя устройства, подходящие для более или менее серьезной работы, обходятся дороже. Средние цены могут быть на уровне и 10, и 20 тысяч — примерно столько же стоят и «взрослые», почти профессиональные модели.

Levenhuk Rainbow 2L

  • тип: оптический; 
  • кратность увеличения: 40-400; 
  • подсветка: нижняя и верхняя; 
  • цена, руб.: 5000 руб.

Качественно сделанное устройство вполне подходит для школьника, который сможет выполнять с его помощью простые биологические исследования. Для этого вполне достаточно пределов увеличения от 40 до 400, комбинированной подсветки и хорошей оптики, показывающей отличную картинку в любом режиме. Идущих в комплекте препаратов — лапок насекомых, простейших микроорганизмов и кожицы лука — хватит для изучения школьной программы.

Микромед С-13

  • тип: оптический; 
  • кратность увеличения: 40-800; 
  • подсветка: зеркало; 
  • цена, руб.: 4300 руб.

Классическая модель, позволяющая исследовать препараты методом светового поля. С его помощью ребенок может научиться правильно работать с настоящими микроскопами — в том числе, ловить свет с помощью зеркала.

Микроскопу такого типа не требуется батарейка — он работает и дома, и на улице. Главное — чтобы было достаточно хорошее освещение. И, хотя в комплекте не идут светодиодные лампы (а, значит, работать в относительно темном помещении не получится), зато такой прибор ближе к профессиональным моделям.

Bresser Duolux 20x–1280x

  • тип: цифровой (разрешение HD); 
  • кратность увеличения: 20-1280; 
  • подсветка: комбинированная; 
  • цена, руб.: 19000 руб.

Прибор, сочетающий в себе и современные технологии, и классику. При желании, этим цифровым микроскопом можно пользоваться как самым обычным оптическим — притом, что оптика у него по-настоящему качественная. Но можно подключить и цифровую камеру для съемки увеличенных изображений и передачи на компьютер.

Большая кратность позволяет применять Bresser Duolux для серьезной работы — купив прибор для детских исследований, можно продолжать использовать его, например, для написания курсовых на биофаке института, и даже в научной деятельности.

С помощью этого микроскопа легко рассмотреть чешуйки на листьях, микроорганизмы и бактерии. Наличие отражающей светодиодной подсветки позволяет изучать даже полупрозрачные образцы. А пластиковое колесо под предметным столиком позволяет менять светофильтры и регулировать диаметр светового пучка. Подсветка работает и от сети, и от батареек, а единственный минус — небольшое снижение резкости при максимальном увеличении.

Тест и обзор ноутбука Perstigio SmartBook 141S: тонкий подход к работе и учебе

Виды микроскопов

Чтобы правильно определить преимущество использования световой микроскопии перед электронной, надо рассмотреть принцип действия микроскопов. Более подробно на занятиях по предмету «Биология» рассматриваются строение, принцип действия и правила использования светового микроскопа. Даются представления о работе электронного микроскопа, его возможностях при изучении биологических объектов. В некоторых заданиях требуется сравнить два вида микроскопии.

В оптическом (световом) микроскопе используется система линз, расположенных в окуляре и объективе. Изображение получается в результате преломления и рассеивания света. Приборы, основанные на световой технологии, позволяют добиться увеличения объектов в 140–2000 раз.

Что можно увидеть в световой микроскоп:

  • крупные структуры размером от 0,5–1 мкм (клетки с органеллами, включениями, кристаллы);
  • пластиды (лучше всего видны хлоропласты);
  • ядро с ядрышком;
  • аппарат Гольджи;
  • митохондрии.

В электронном микроскопе изображение получают с помощью рассеивания потока электронов. Достигается увеличение объекта до 20000 раз. Можно изучить ультраструктуру органелл клетки, строение вирусов.

Сфера применения оптического микроскопа

В последние пару десятилетий микроскоп перестал быть исключительно лабораторным оборудованием и «вышел в люди»: сфера его применения значительно расши­рилась. Теперь микроскопы покупают не только для исследований клеток в научных и лечебно-диагностических центрах, но и для дома, для школы и просто в подарок.

В качественный микроскоп среднего ценового сегмента можно увидеть растительные и животные клетки, грибы и микроорганизмы. Объектом самостоятельного исследования может послужить что угодно! К примеру, клетки лука под микроскопом вполне способны пробудить интерес к биологии не только у школьника, но и у пенсионера. Изучение микромира может стать увлекательным хобби для взрослого, в чьем детстве микроскопов в школах еще не было.

Очень распространены сегодня компактные цифровые микроскопы, подключаемые к ПК или ноутбуку через USB-порт. Весят USB-микроскопы всего 100-200 г, при этом генерируют изображение высокого разрешения на увеличениях в сотни крат. Обычные бинокулярные модели также могут быть оснащены цифровым окуляром – специальной камерой, которая устанавливается в окулярную трубку вместо обычного окуляра. Благодаря возможности выводить изображение на монитор или стену аудитории через проектор, микроскопы с камерами востребованы в учебных учреждениях разного уровня.

Замечание. Если вы нуждаетесь в простых советах и не готовы тратить время на чтение общих сведений, пропустите следующие разделы до .

Разрешение микроскопа

Широко распространено заблуждение, что разрешение микроскопа и его увеличение связаны между собой жесткой связью – чем больше увеличение, тем более мелкие объекты мы сможем в него увидеть. Это не верно. Самым важным фактором всегда остается разрешение оптической системы. Ведь увеличение неразрешенного изображения не даст нам о нем новой информации.

Разрешение микроскопа зависит от числового значения апертуры объектива, а также от длины волны источника освещения. Как вы видите, параметра увеличения системы в этой формуле нет.

где λ – усредненная длина волны источника света, NA – числовая апертура объектива, R – разрешение оптической системы.

При использовании объектива с NA 0,95 на лабораторном микроскопе с галогенным источником (средняя длина волны порядка 500 нм) мы получаем разрешение около 300 нм.

Как видно из принципиальной схемы светового микроскопа, окуляры увеличивают действительное изображение объекта. Если, к примеру, повысить кратность увеличения окуляров в 2 раза (вставить в микроскоп окуляры 20х) – то общее увеличение системы удвоится, но разрешение при этом останется прежним.

Оглавление книги открыть закрыть

1. Предмет, цели и задачи цитологии, ее место в системе биологических наук2. Краткая история развития цитологии3. Клеточная теория Т. Шванна и Р. Вирхова. Основные положения клеточной теории4. Фиксация и окраска клеток и тканей, предназначенных для микроскопических исследований5. Устройство и принцип работы светового микроскопа. Разрешающая способность и увеличение светового микроскопа6. Специальные методы световой микроскопии7. Компонентный состав биологических мембран. Мозаичная и сэндвич-модели организации биологических мембран. Свойства биологических мембран8. Особенности строения плазматической мембраны растительных и животных клеток. Функции плазматической мембраны.9. Структура и функции гладкой и шероховатой эндоплазматической сети10. Структура и функции аппарата Гольджи11. Химический состав, структурные особенности и функции лизосом. Лизосомальный цикл12. Общая характеристика, морфофункциональная и гистогенетическая классификации эпителиальных тканей13. Морфофункциональная характеристика эпителия тонкого и толстого кишечника14. Морфофункциональная характеристика многослойных эпителиев15. Закономерности организации железистого эпителия. Разнообразие и классификация желез16. Особенности строения желез внешней секреции. Морфология и функции молочной железы. Особенности организации экзокринной части поджелудочной железы17. Строение желез внутренней секреции18. Общая характеристика и классификация тканей внутренней среды19. Клеточный состав рыхлой соединительной ткани. Химический состав и структура волокнистого компонента и аморфного вещества рыхлой соединительной ткани20. Особенности строения и функции плотной соединительной ткани21. Морфофункциональная характеристика соединительных тканей со специальными свойствами22. Морфофизиологическая характеристика хрящевых тканей. Гистогенез хрящевых тканей23. Клеточный состав и характеристика межклеточного вещества костной ткани. Типы костной ткани. Микроанатомическая структура трубчатой кости24. Классификация клеток периферической крови и их функции25. Морфофункциональная и гистогенетическая классификации мышечных тканей26. Строение сердечной мышечной ткани27. Локализация в организме и строение гладкой мышечной ткани28. Гистологическая характеристика нервной ткани, классификация образующих ее клеток29. Строение безмякотных и мякотных нервных волокон. Механизм образования оболочек нервных волокон

Устройство и принцип работы микроскопа

Корпус микроскопа состоит из станины (штатива) и основания, в котором закреплен штатив и система подсветки. Обычно несущие элементы изготавливают из легких металлических сплавов, и только корпуса детских микроскопов отштамповывают из пластика. Полая внутри станина содержит фокусировочный механизм – систему грубого и тонкого наведения резкости. Ручки управления механизмом расположены по бокам корпуса: либо на одной оси (коаксиально), либо раздельно.

К верхней части станины крепится окулярная насадка: чаще всего поворотная, с возможностью вращения на 360°. Под ней – револьверное устройство для мгновенной смены объективов при работе. Револьверы микроскопов обычно имеют 3-4 резьбовых «гнезда» – посадочных места для объективов. Насадка (окулярная голова) бывает моно-, бино- и тринокулярной. В монокулярный микроскоп можно смотреть только одним глазом, в бинокулярный – двумя, а тринокулярный имеет еще и 3-й тубус, предназначенный для подключения цифровой фотокамеры.

Внизу станины установлен предметный столик для расположения образцов при просмотре. Все профессиональные микроскопы оснащены препаратоводителем для плавного перемещения слайдов по поверхности столика; модели попроще имеют только подпружиненные зажимы для стекол.

В центре предметного стола, вокруг т.н. оптической оси микроскопа, имеется отверстие, сквозь которое проходят испускаемые нижним осветителем световые лучи. Если объект изучения не имеет прозрачных или полупрозрачных участков, рассмотрение его под биологическим микроскопом невозможно.

Прошедший через слайд пучок света попадает на фронтальную линзу рабочего объектива, установленного в револьверной насадке вертикально. Далее, при прохождении света через оптическую систему микроскопа формируется увеличенное изображение и направляется в один или несколько окулярных тубусов. Окуляры также увеличивают полученную картинку и проецируют ее на сетчатку глаза наблюдателя. Итоговое увеличение микроскопа равно кратности активного объектива, умноженной на увеличение одного из окуляров. Т.е. при работе с объективом 40х и парой 20-кратных окуляров общее увеличение составит 40*20 = 800 крат.

В некоторых моделях микроскопов дополнительно предусмотрена и верхняя подсветка: над предметным столиком закреплен источник света, компенсирующий недостаток внешней освещенности. Но верхний осветитель для биологического микроскопа вовсе не обязателен: его с успехом заменит обычная настольная лампа.

Назначение самого конденсора – не дать лучам света пройти мимо объекта изучения на предметном столике: он собирает их и направляет в нужную область, тем самым улучшая освещенность изображения.

Если ирисовой (лепестковой) диафрагмы с регулируемым диаметром отверстия нет, под предметным столиком устанавливают дисковую диафрагму с отверстиями разного размера.

Разрешающая способность микроскопа

Качество изображения определяется разрешающей способностью микроскопа, т.е. минимальным расстоянием, на котором оптика микроскопа может различить раздельно две близко расположенные точки. разрешающая способность зависит от числовой апертуры объектива, конденсора и длины волны света, которым освещается препарат. Числовая апертура (раскрытие) зависит от угловой апертуры и показателя преломления среды, находящейся между фронтальной линзой объектива и конденсора и препаратом.

Угловая апертура объектива — это максимальный угол (AOB), под которым могут попадать в объектив лучи, прошедшие через препарат. Числовая апертура объектива равна произведению синуса половины угловой апертуры на показатель преломления среды, находящейся между предметным стеклом и фронтальной линзой объектива. N.A. = n • sinα где, N.A. — числовая апертура; n — показатель преломления среды между препаратом и объективом; sinα — синус угла α равного половине угла АОВ на схеме.

Таким образом, апертура сухих систем (между фронтальной линзой объектива и препаратом-воздух) не может быть более 1 (обычно не более 0,95). Среда, помещаемая между препаратом и объективом, называется иммерсионной жидкостью или иммерсией, а объектив, рассчитанный для работы с иммерсионной жидкостью, называют иммерсионным. Благодаря иммерсии с более высоким показателем преломления чем у воздуха, можно повысить числовую апертуру объектива и, следовательно, разрешающую способность.

Числовая апертура объективов всегда гравируется на их оправах. Разрешающая способность микроскопа зависит также от апертуры конденсора. Если считать апертуру конденсора равной апертуре объектива, то формула разрешающей способности имеет вид R=λ/2NA, где R — предел разрешения; λ — длина волны; N.A — числовая апертура. Из этой формулы видно, что при наблюдении в видимом свете (зеленый участок спектра — λ=550нм), разрешающая способность (предел разрешения) микроскопа не может быть > 0,2мкм

История создания

Хотя первые увеличительные линзы, на основе которых собственно и работает световой микроскоп, археологи находили еще при раскопках древнего Вавилона, тем не менее, первые микроскопы появились в Средневековье. Что интересно, среди историков нет согласия по поводу того, кто первым изобрел микроскоп. Среди кандидатов на эту почтенную роль такие известные ученые и изобретатели как Галилео Галилей, Христиан Гюйгенс, Роберт Гук и Антонии ван Левенгук.

Стоит также упомянуть итальянского врача Г. Фракосторо, который еще в далеком 1538 году первым предложил совместить несколько линз, чтобы получить больший увеличительный эффект. Это еще не было созданием микроскопа, но стало предтечей его возникновения.

А в 1590 году некто Ханс Ясен, голландский мастер по созданию очков заявил, что его сын – Захарий Ясен – изобрел первый микроскоп, для людей Средневековья такое изобретение было сродни маленькому чуду. Однако, ряд историков сомневается в том, является ли Захарий Ясен истинным изобретателем микроскопа. Дело в том, что в его биографии немало темных пятен, в том числе пятен и на его репутации, так современники обвиняли Захарию в фальшивомонетчестве и краже чужой интеллектуальной собственности. Как бы там ни было, но точно узнать был ли Захарий Ясен изобретателем микроскопа или нет, мы, к сожалению, не можем.

А вот репутация Галилео Галилея в этом плане безупречна. Этого человека мы знаем, прежде всего, как, великого астронома, ученого, гонимого католической церковью за свои убеждения о том, что Земля вращается вокруг Солнца, а не наоборот. Среди важных изобретений Галилея – первый телескоп, с помощью которого ученый проник своим взором в космические сферы. Но сфера его интересов не ограничивалась лишь звездами и планетами, ведь микроскоп, это по сути тот же телескоп, но только наоборот. И если с помощью увеличительных линз можно наблюдать за далекими планетами, то почему бы не обратить их мощь в другое направление – изучить то, что находится у нас «под носом». «Почему бы и нет», – наверное, подумал Галилей, и вот, в 1609 году он уже представляет широкой публике в Академии деи Личеи свой первый составной микроскоп, который состоял из выпуклой и вогнутой увеличительных линз.

Старинные микроскопы.

Позднее, спустя 10 лет, голландский изобретатель Корнелиус Дреббель усовершенствовал микроскоп Галилея, добавив в него еще одну выпуклую линзу. Но настоящую революцию в развитии микроскопов совершил Христиан Гюйгенс, голландский физик, механик и астроном. Так он первым создал микроскоп с двухлинзовой системой окуляров, которые регулировались ахроматически. Стоит заметить, что окуляры Гюйгенса применяются и по сей день.

А вот знаменитый английский изобретатель и ученый Роберт Гук навеки вошел в историю науки, не только как создатель собственного оригинального микроскопа, но и как человек, сделавший при его помощи великое научное открытие. Именно он первым увидел через микроскоп органическую клетку, и предположил, что все живые организмы состоят из клеток, этих мельчайших единиц живой материи. Результаты своих наблюдений Роберт Гук опубликовал в своем фундаментальном труде – Микрографии.

Опубликованная в 1665 году Лондонским королевским обществом, эта книга тут же стала научным бестселером тех времен и произвела подлинный фурор в научном сообществе. Еще бы, ведь в ней имелись гравюры с изображением увеличенной в микроскоп блохи, вши, мухи, комара, клетки растения. По сути, этот труд представлял собой удивительное описание возможностей микроскопа.

Интересный факт: термин «клетка» Роберт Гук взял потому, что клетки растений ограниченные стенами напомнили ему монашеские кельи.

Так выглядел микроскоп Робета Гука, изображение из «Микрографии».

И последним выдающимся ученым, который внес свой вклад в развитие микроскопов, был голландец Антонии ван Левенгук. Вдохновленный трудом Роберта Гука, «Микрографией», Левенгук создал свой собственный микроскоп. Микроскоп Левенгука, хотя и обладал лишь одной линзой, но она была чрезвычайно сильной, таким образом, уровень детализации и увеличения у его микроскопа был лучшим на то время. Наблюдая в микроскоп живую природу, Левенгук сделал множество важнейших научных открытий в биологии: он первым увидел эритроциты, описал бактерии, дрожжи, зарисовал сперматозоиды и строение глаз насекомых, открыл инфузории и описал многие их формы

Работы Левенгука дали огромный толчок к развитию биологии, и помогли привлечь внимание биологов к микроскопу, сделали его неотъемлемой частью биологических исследований, аж по сей день. Такая в общих чертах история открытия микроскопа

Детские микроскопы

Bresser National Geographic 40–640x

  • тип: оптический; 
  • кратность увеличения: 40-640; 
  • подсветка: нижняя; 
  • цена, руб.: 4000 руб.

Список хороших детских микроскопов стоит начать с модели National Geographic 40–640x. Подойдет техника не только для развлечения, но и для школьного исследования. Например, для лабораторной работы по биологии, или получения новых знаний о микромире. Ведь, хотя на максимальном увеличении картинка немного размыта, настройка меньшей кратности сделает ее достаточно четкой.

Среди особенностей модели — качественный корпус, удобный окуляр и светодиодная подсветка. А еще — неплохой комплект аксессуаров для опытов. Хотя все предметные и покровные стекла сделаны из пластика, чтобы ребенок не разбил их и не поцарапался. Набор позволяет выращивание рачков и дрожжевых клеток, а все, что рассматривает в микроскоп юный исследователь, можно сфотографировать с помощью подставки для смартфона.

Espada 1000X

  • тип: цифровой (видео до 1280х960, фото – до 1600х1200); 
  • кратность увеличения: 20-1000; 
  • подсветка: верхняя; 
  • цена, руб.: 1400 руб.

Прибор, не совсем похожий на настоящий микроскоп и предназначенный больше не для исследований, а для получения базовых знаний о микромире. Хотя его название позволяет предположить о возможности использования в настоящей работе.

Но цифра «1000» вряд ли соответствует реальности — на самом деле качественное изображение получается только на 100х. Впрочем, за 1400 рублей трудно ожидать покупки профессионального прибора. А встроенная электроника вполне способна произвести впечатление — камера делает неплохие фото и передает их на ПК при подключении по USB.

Celestron 44121

  • тип: оптический; 
  • кратность увеличения: 40-600; 
  • подсветка: комбинированная; 
  • цена, руб.: 3400 руб. 

Модель Celestron 44121 не стоит выбирать для настоящего исследования — даже при том, что ее максимальное увеличение достигает 600. Но, благодаря комплектации специальным набором для опытов и качественной оптики, технику можно использовать, например, для того, чтобы рассматривать насекомых, мелких ракообразных или образцов горной породы. А еще — срезы растений или даже инфузорий и амеб.

Система фокусировки

Перед тем, как выбрать микроскоп, стоит обратить внимание еще и на способы фокусировки. То есть — на механизмы, которые позволяют увеличить резкость

Чаще всего у прибора перемещается предметный столик. Но у некоторых моделей есть подвижный оптический блок — такая фокусировка часто применяется на стереомикроскопах, позволяющих исследование не микроскопических, а крупных предметов весом больше 100 г.

Оба способа фокусировки основаны на реечной передаче, надежность и долговечность которой зависит от материала. Для повышения срока службы микроскопа следует выбрать модель с металлической, а не пластиковой ведущей шестерней фокусировочного механизма.

Кроме того, фокусировка может быть точной или грубой. Первый вариант больше подходит для профессиональных моделей. А, решая, как выбрать микроскоп для дома, стоит остановиться на грубой — от 0,2 до 2 мм. Точная фокусировка может понадобиться только в тех случаях, когда ребенок уже серьезно увлекся наукой и не просто рассматривает не стандартные образцы, а сам выбирает объекты для изучения.

Общие рекомендации по уходу за микроскопом

  • Храните устройство на прочной и ровной поверхности в месте, где микроскоп защищен от падения.

  • Для прибора оптимально подходит сухая и прохладная зона. Такой микроклимат позволит избежать случайных загрязнений, развития коррозии или грибка.

  • После использования устройства закрывайте его пластиковым чехлом, который идет в комплекте или продается отдельно. Это защитит оптику от пыли и упростит уход за микроскопом.

  • Подвижные металлические детали должны быть обработаны силиконовой смазкой, которую необходимо обновлять 1-2 раза в год.

  • Если вы упаковываете микроскоп для длительного хранения, заверните его в плотный герметичный пакет с несколькими пакетиками влагопоглотителя (силикагеля).

Как ухаживать за оптикой?

Оптика – самое главное, поэтому она нуждается в особенно бережном и тщательном уходе. Чтобы понять, чем чистить линзы микроскопа, необходимо разобраться в видах загрязнений.

  • Легкие – к таковым относятся частички пыли или отмершей кожи, мелкие осколки от сломанных предметных стекол. Удаление таких загрязнений предпочтительно проводить сжатым воздухом. Для этого достаточно купить в аптеке небольшую резиновую грушу. Такой метод позволит быстро правиться с загрязнением без вреда для оптики.

  • Водорастворимые – если пятно можно удалить обычной водой, попробуйте простой, но эффективный вариант очистки: подышите на оптическую поверхность, а когда она запотеет, протрите мягкой салфеткой. Такая очистка микроскопа позволяет избежать переувлажнения поверхностей.

Дополнительно важно помнить об общих правилах ухода за линзами и объективами. Придерживаясь следующих простых правил, вы сможете избежать порчи оптических элементов и дополнительных затрат на покупку новых

  • Старайтесь не трогать руками какие-либо стеклянные поверхности устройства.

  • Протирая оптику салфеткой, делайте это максимально бережно, не давите, двигайтесь строго от центра к краям.

  • Не разбирайте корпус объектива или тубуса – любое обслуживание линз, находящихся внутри микроскопа, должны выполнять профессионалы.

  • Периодически осматривайте стеклянные поверхности на предмет пылинок и других легких загрязнений.

  • Зная, как ухаживать за микроскопом, постарайтесь свести появление пятен на оптике к минимуму – слишком частые и усердные чистки приводят к истиранию просветляющего покрытия линз, прочим неприятностям.

  • Проверяйте, не осталось ли на объективе следов иммерсионного масла – даже самое малое его количество не даст навести фокус на исследуемом препарате.

  • Сломанную лампу подсветки следует заменять только на модель, рекомендованную производителем. В противном случае можно повредить линзы.

  • Берегите оптику от соприкосновения с исследуемыми препаратами и реактивами.