Устройство и принцип работы микроскопа, правила его использования

Содержание материала

Что такое люминесцентная микроскопия

При физическом процессе соединения поглощают фотоны. Одновременно у веществ появляется излучение с иной длиной волны. У получившихся фотонов она больше, но энергии меньше. Когда соединения облучают ультрафиолетом, отдельные из них светятся. Цвет излучения направлен к красной спектральной части.

Люминесцентная микроскопия основана на способности некоторых веществ светиться.

Люминесцентные устройства функционируют в отраженном свете. Основной задачей при применении флуоресценции является отделение потока света объекта от сильного излучения подсветки. Чтобы увеличить наглядность изображения, используется темный или черный фон.

Применение[править | править код]

Основная статья: Микроскопия

Оптическая микроскопия является одним их ведущих методов исследований в гистологии, микробиологии, минералогии, металлографии и многих других отраслях науки и техники.

В большинстве случаев используются универсальные или биологические рабочие микроскопы, для более специальные модели (бинокулярный микроскоп, поляризационный микроскоп, металлографический микроскоп и др.).

Специальные методы исследования в микроскопии — метод тёмного поля, метод светлого поля, метод фазового контраста, поляризационная микроскопия — позволяют изучить тонкую структуру объектов.

Запрет Аббе

Свыше 100 лет назад известный немецкий физик и оптик Э. Аббе установил, что для любого микроскопа, работающего с фокусируемым линзами светом или другим излучением, будут существовать принципиальные ограничения, и главное из них обуславливается дифракцией — способностью волны огибать объект; она «скрывает» детали меньшие, чем половина длины волны излучения. А поскольку длина волны видимого света составляет доли микрона, то в оптический микроскоп нельзя рассмотреть предмет субмикронных размеров.

Чтобы продвинуться в субмикронный мир, логично использовать излучение меньшей длины волны, например рентгеновское, или поток электронов (напомним, что электрон, как всякая элементарная частица, одновременно является и волной). Так в 30-х годах нашего века возникла электронная микроскопия.

У частиц излучения, независимо от его природы, есть универсальная характеристика — энергия. Чем больше энергия, тем короче длина волны. Прибор, построенный по принципу оптического микроскопа, но работающий с потоком электронов, преломляемым специальными магнитными линзами, называется электронным микроскопом. Электронные волны примерно в тысячу раз короче световых, поэтому увеличение лучших электронных микроскопов достигает одного миллиона. Но досталось оно непросто: электронный микроскоп в тысячи раз больше, сложнее и дороже оптического и имеет существенный недостаток — он разрушает исследуемый объект. Дело в том, что под действием электронов с энергиями в десятки электронвольт гибнет все живое, а в кристаллических материалах возникают дефекты — нарушения регулярного расположения атомов. И тем не менее электронный микроскоп позволил сделать большой шаг в изучении субмикронного мира.

А можно ли другим путем проникнуть в глубины микромира?

Световая микроскопия

В основе световой микроскопии лежат различные свойства света. Световая микроскопия обеспечивает увеличение до 2-3 тысяч раз, цветное и подвижное изображение живого объекта, возможность микрокиносъемки и длительного наблюдения одного и того же объекта, оценку его динамики и химизма.

Современные световые микроскопы представляют собой довольно сложные приборы, совершенствующиеся в течение 400 лет с момента создания первого прототипа микроскопа.

Освещение при микроскопии играет весьма существенную роль.

Неправильное или недостаточное освещение не позволит использовать полностью все возможности микроскопа.

Хорошее освещение достигается при установке света по методу Келлера. Для этого устанавливают осветитель на расстоянии 30-40 см от микроскопа и, перемещая патрон с лампочкой или весь осветитель, добиваются четкого изображения нити накала лампы на закрытой полностью диафрагме конденсора так, чтобы это изображение полностью заполняло отверстие конденсора.

Закрыв диафрагму осветителя, открывают диафрагму конденсора и, перемещая конденсор, добиваются резкого изображения диафрагмы осветителя в поле зрения микроскопа. Чтобы яркий свет не слепил глаза, предварительно уменьшают с помощью реостата накал нити лампы.

И, наконец, с помощью зеркала изображение отверстия диафрагмы устанавливают в центре поля зрения, а диафрагму осветителя открывают так, чтобы было освещено все видимое поле зрения. Раскрывать больше диафрагму не нужно, так как это не усилит освещенности, а лишь уменьшит контрастность за счет рассеянного света.

Как правильно пользоваться микроскопом: настраиваем прибор

Интересуясь, как пользоваться микроскопом Levenhuk, обратите внимание, что большинство моделей позволяет менять объектив прямо во время наблюдений поворотом револьверной головки. Для начала работы с устройством бренда «Левенгук» или Bresser необходимо выбрать оптику с наименьшими показателями увеличения и провести базовую настройку

  • Разместите стекло с препаратом (слайд) на предметном столике и приблизьте к объективу на расстояние 3-4 мм.

  • Соблюдая последовательность работы с микроскопом, используйте колесико грубой настройки, чтобы медленно отдалять образец наблюдений от объектива. Делать это нужно до тех пор, пока изображение не станет четким.

  • Аккуратно поверните колесико тонкой настройки, чтобы картинка обрела максимальную резкость.

Основные правила работы с микроскопом гласят, что предметный столик или объектив нужно именно отдалять. Если смотреть в окуляр и одновременно приближать препарат, легко повредить предметный столик или оптику. Приемы работы с микроскопом очень просты: чтобы сменить предельную степень увеличения, достаточно повернуть револьверную головку до характерного щелчка. Но делать это также необходимо под наблюдением: оптика с большей кратностью длиннее и может зацепить предметное стекло. Поэтому работать с микроскопом нужно очень аккуратно, при необходимости повторяя настройку для каждого объектива в отдельности.

Если вы используете бинокулярный прибор, все описанные действия необходимо проводить, используя лишь один окуляр. Второй при подготовке микроскопа к работе легко подогнать при помощи регулировочного кольца. Точность такой регулировки легко определить: смотря в окуляры обоими глазами, пользователь должен видеть только одно изображение высокой четкости.

Зная, как правильно пользоваться микроскопом, вы гарантированно совершите немало личных открытий! Изучайте удивительные тайны окружающего мира прямо у себя дома.

Виды световых микроскопов с описанием

Особенности конструкции зависят от предназначения микроскопа. Для увеличения четкости изображения используют методы флуоресценции, люминесценции, инверсии и др.

Биологическое оборудование

Биологические приборы позволяют исследовать прозрачные или полупрозрачные объекты. Принцип их работы основан на изучении светлого поля в потоке проходящего света. Такие микроскопы применяют в лабораторной диагностике, ботанике, цитологии, микроэлектронике, археологии и пищевой промышленности.

Биологическое оборудование позволяет исследовать прозрачные объекты.

Для повышения разрешающей способности используют иммерсионные оптические системы. В этом случае между образцом и первым стеклом вводится жидкость с высоким коэффициентом преломления (минеральное масло, раствор глицерина, дистиллированная вода и др.).

Криминалистическое оборудование

Главная особенность криминалистического микроскопа — это возможность сравнения 2 объектов. Такое исследование помогает найти сходство между компонентами взрывных устройств, гильзами, пулями, волосами, волокнами и другими уликами.

Это позволяет снизить вероятность ошибок, построить модели объектов и сравнить с данными из электронных источников.

Флуоресцентные микроскопы

Флуоресцентные, или люминесцентные, микроскопы позволяют исследовать объекты, которые испускают световой поток после облучения ультрафиолетом. Они оборудованы коротковолновым источником освещения, светофильтрами и интерференционной пластинкой.

Флуоресцентный микроскоп — оптический прибор, показывающий в увеличенном виде клетки.

Флуоресцентные микроскопы активно применяют в лабораторной диагностике, в частности, при изучении клеток крови и антигенов. Для анализа предметов, которые не излучают свет, используют люминесцентные красители и порошки.

Поляризационные микроскопы

Поляризационный прибор является наиболее сложным из всех представленных видов микроскопов. Его используют для исследования анизотропных материалов, полимеров, некоторых клеток и микробиологических объектов.

Источник света со специальными фильтрами формирует поляризованный поток, который облучает образец.

Инвертированные с перевернутым положением объектива

В инвертированном микроскопе объектив располагается не над образцом, а под предметным столиком. Такие приборы применяют в биологии, медицине, промышленности, металлографии, криминалистике и других сферах.

Инвертированный микроскоп имеет особенную конструкцию.

Перевернутое положение оптической системы позволяет изучать более крупные образцы и работать со специальной посудой.

Микроскопы для металлографии

Металлографические микроскопы предназначены для исследования поверхности непрозрачных объектов. Изображение получают путем преломления отраженного светового луча.

Предметом изучения являются микродефекты поверхности и зерна сплавов. Помимо металлургии и промышленности, такие устройства применяют в геологии и археологии. Для обеспечения четкости используют специальные системы линз и зеркал.

Стереомикроскопы (дают объемное изображение)

Стереомикроскопы оснащены 2 объективами, что позволяет получать объемное изображение исследуемого образца. По сравнению с устройствами плоского поля они дают более резкую, четкую и контрастную картинку.

Стереомикроскопы позволяют получать объемное изображение.

Такие приборы используют в точном машиностроении, ювелирном деле и других областях промышленности.

Моновидеомикроскопы с возможностью получения видео

Видеомикроскопы предназначены для динамического наблюдения за образцом и фиксации изображения. Для повышения эффективности работы их оснащают специальными линзами, светофильтрами и адаптерами.

Пьезоэлектрические пальцы микроскопа

Рис. 2. Пьезоэлектрический манипулятор. 1 — электроды, 2 — пьезокерамика.

Но как можно сканировать поверхность предмета со столь высокой точностью? Для этого сконструированы прецизионные пьезоэлектрические манипуляторы, простейший из которых показан на рисунке 2. Он сделан из специальной керамики, слегка меняющей размеры при изменении приложенного электрического поля, для чего манипулятор помещают между пластинами конденсатора. Часто сами пластины наносятся на поверхность керамического манипулятора в виде электродов из тонкого слоя металла. Меняя напряжение на электродах на 0,1 В, можно удлинять такой стержень всего на 0,1 нм, т. е. на величину поперечника атома. (Слой металла на поверхности манипулятора достаточно тонок, чтобы, растягиваясь, не препятствовать этому перемещению.)

Рис. 3. Сканирующий зондовый микроскоп. 1 — изучаемый объект, 2 — зонд, 3 — дисплей, 4 — система обратной связи.

Простая конструкция из трех стержней-манипуляторов, соединенных в одной точке перпендикулярно друг другу, как показано на рисунке 3, может двигать зонд, помещенный в месте соединения, во всех пространственных направлениях. Три управляющих напряжения, Ux, Uy и Uz, зададут координаты смещения зонда х, у и z. Меняющиеся напряжения Ux, Uy перемещают зонд по поверхности исследуемого предмета, сканируя ее по параллельным строкам, отстоящим друг от друга на заданное расстояние (подобно лучу на экране телевизора). А напряжение Uz двигает зонд вверх и вниз; если Uz поддерживать неизменным, то при сканировании поверхности из-за неровностей удалялась бы или приближалась к зонду. Но это неудобно для регистрирующей системы — сигнал сильно меняется, да и при больших неровностях зонд может сталкиваться с ними. Чтобы избежать этого, в прибор вводят элемент самоорганизации — отрицательную обратную связь. Она заставляет зонд двигаться вверх и вниз в соответствии с рельефом поверхности.

На английском языке[править | править код]

  • Коллекция старинных микроскопов
  • Historical microscopes, an illustrated collection with more than 3000 photos of scientific microscopes by European makers (German)
  • Металл-микроскоп (Metallurgical microscope) SubsTech — free and open knowledge source in Materials Engineering
  • Molecular Expressions, концепции оптической микроскопии
  • Online — руководство по практике оптической микроскопии
  • Видео — оптическая микроскопия
  • Structure Magazine
  • Microscopy Information Easily understandable articles relating to optics, techniques and specimen preparation.
  • OpenWetWare
  • CurrentProtocols

Методы исследования

В люминесцентной микроскопии применяются различные методы исследований. Микробиологи используют флюорохромирование и реакцию иммунной флуоресценции. Вторую часто называют также методом флуоресцирующих тел.

Существует другой вид изучения молекул — конфокальная микроскопия. Она дает возможность исследовать частицы на той или иной глубине.

Флюорохромирование

Метод является распространенным в исследовании органов и тканей человека. Вторичную люминесценцию получают, обрабатывая образцы флюорохромами. Каждый предназначен для каких-либо целей.

Акридиновый оранжевый применяется для диагностики раковых заболеваний и инфаркта на ранних сроках. Ишемические участки имеют зелено-желтое свечение. Флюорохром применяют, чтобы выявлять кислые мукополисахариды. Если он взаимодействует с ДНК, появляется зеленая флуоресценция. Для реакции красителя на РНК характерна красная.

Флюорохромирование — это обработка флуорохромом с целью увеличения контрастности свечения.

Кофеин 5 и родамин применяются для определения гликогена в печени. Фосфин 3Р — для выявления липидов. Аналогичными свойствами обладает смесь растворов бензпирена и кофеина. Второй должен быть насыщенным. При наличии липидов появляется бело-голубая люминесценция.

Тиофлавин окрашивает особые белковые соединения при амилоидозе. Для него характерно зеленое свечение. При такой болезни внутренних органов в них образуются амилоиды.

Морин используют для определения содержания кальция в тканях. После обработки спиртовым раствором образцы имеют зеленую люминесценцию.

Черный солохром применяют для выявления алюминия. Он сопровождается желто-оранжевым свечением.

Реакция иммунной флюоресценции

Благодаря методу флуоресцирующих тел выявляют антитела, гормоны, продукты метаболизма и др. Реакция иммунной флюоресценции определяет рак и инфекции на ранних стадиях. Возможности таких исследований расширило развитие иммунохимии. Сейчас небелковые соединения в тканях выявляют искусственными гаптенами.

Особенности исследования отдельных молекул и микроорганизмов

В теории можно сделать изображение какой-либо молекулы, используя оптические устройства, красящие вещества, ультрафиолет и светофильтр. Объект исследования должен флюоресцировать на темном фоне, а остальные частицы нет. Их цветовое значение близко к нулю.

Детектор микроскопа распознает не только излучение нужной молекулы, но и реагирует на иные фотоны. Они попадают на люминесцентное устройство от других источников света.

Сейчас для детального анализа образца применяют оптико-механические приборы и электронно-вычислительную технику. С помощью современного программного обеспечения ее подключают к монитору. На него выводится трехмерное изображение. После получения информации о координатах новых частиц компьютер микроскопа запоминает их расположение. Они исчезают с экрана.


Для осуществления наблюдения нужен стереомикроскоп.

Получить изображение объекта легко с помощью оптики, дополнительной техники и ПО. Качество снимка будет ниже, чем при применении люминесцентного устройства. Иногда для наблюдений такой способ допускается, т.к. не всегда требуется сверхвысокое разрешение.

Для осуществления наблюдения понадобятся:

  • простой стереомикроскоп;
  • источник возбуждения излучения;
  • светофильтры для блокировки света возбуждения и удерживания свечения объектов, создающих ненужный фон;
  • система для проецирования полученной картинки на фотокамеру;
  • компьютер с ПО для запечатления и обработки изображений.

Классификация микроскопов

Хотя современные микроскопы представляют собой удобные устройства для детального изучения различных микрообъектов, не существует универсального инструмента, который будет эффективен во всех ситуациях.

Сегодня существует множество различных конструкций микроскопов для разных задач. Классификация микроскопов производится в зависимости от класса или конструкции. Сначала мы рассмотрим деление микроскопов на классы. В мировой практике все микроскопы делят на три класса в зависимости от исследований для которых они предназначены.

Классы микроскопов

Еще одной важной классификацией микроскопов является деление в зависимости от конструкции микроскопа:

  1. Прямой микроскоп – объект исследования находиться под объективом. Предназначены для исследования небольших образцов и образцов на предметных стеклах. Увеличение прямых микроскопов варьируется от 25х до 1000х.

  2. Инвертированный микроскоп – объект исследования находиться над объективом. Предназначены для исследования клеток в специальной посуде и крупногабаритных образцов весом до 30 кг. Увеличение инвертированных микроскопов варьируется от 12,5х до 1000х.

  3. Стереомикроскопы — объект исследования находиться под объективом. Предназначены для получения объемных изображений. Микроскопы имеют два оптических пути, которые обеспечивают стереоэффект. Они широко используются в биологических исследованиях, в промышленности, криминалистике. Увеличение стереомикроскопов варьируется от 2х до 200х для рутинного и лабораторного классов, для исследовательского до 500х. В нашем каталоге такой вид микроскопов представлен моделью Leica M205. Это люминесцентный микроскоп, предназначенный для обнаружения трансгенных экспрессий. Благодаря этому возможно отобрать лучший для исследования образец.

  4. Цифровые микроскопы – это модели особой конструкции, как правило, макроскопы, в которых вместо тубуса с окулярами используется цифровая камера.

  5. Конфокальные микроскопы – предназначены для сверхсложных биологических исследований. Используются в основном в научно-исследовательских институтах.
  6. Электронные микроскопы – в качестве источника энергии вместо света используется поток электронов. Электронный микроскоп позволяет изучать объекты с увеличением 100 — 1 000 000 раз и большим разрешением. Используются в основном в научно-исследовательских институтах.
  7. Рентгеновские микроскопы — для исследования очень малых объектов, размеры которых сопоставимы с длиной рентгеновской волны. Основан на использовании электромагнитного излучения с длиной волны от 0,01 до 1 нанометра. Рентгеновские микроскопы по разрешающей способности находятся между электронными и оптическими микроскопами. Теоретическая разрешающая способность рентгеновского микроскопа достигает 2-20 нанометров, что на порядок больше разрешающей способности оптического микроскопа (до 150 нанометров). В настоящее время существуют рентгеновские микроскопы с разрешающей способностью около 5 нанометров

Ознакомившись с классификацией микроскопов можно сделать вывод, что это достаточно сложное оборудование. Поэтому мы всегда рекомендуем нашим клиентам не подбирать оборудование самостоятельно, а обращаться к нашим экспертам. Это люди с соответствующим специализированным образованием и большим опытом реализации решений для микроскопии под различные задачи. Они постоянно совершенствуют свои знания на тренингах от ведущих производителей решений для микроскопии.

Обратившись к нашим специалистам Вы можете быть уверенными что получите наилучшую конфигурацию оборудования, которая будет учитывать:

  • Задачи, которые стоят перед вами;
  • Требование мировых и региональных стандартов для выполнения эти задач;
  • Ваш бюджет.

Осязание светом

Представим себе непрозрачную коническую оболочку с крошечным отверстием в вершине, таким, что на его диаметре не уместится и половина длины волны света (рис. 1). Если через такую оболочку пропускать свет, он далеко не пройдет, так как световая волна не «пролезет» в отверстие таких размеров и отразится обратно. И все же по другую сторону отверстия свет можно обнаружить, но лишь в непосредственной близости — опять на расстоянии половины длины волны. Вот такой «провисающий» свет и используется в оптических микроскопах нового поколения. (Свойство «провисания» имеет квантовомеханическую природу, характерно для любой волны или частицы и называется туннелированием.)

Рис. 1. Оптический сканирующий микроскоп ближнего поля. 1 — падающий свет, 2 — «провисающий» свет, 3 — изучаемый объект, 4 — фотопреобразователь, 5 — усилитель, 6 — монитор.

Поместим вблизи отверстия, на расстоянии, меньшем его диаметра, изучаемый объект. На его поверхности появится световое пятно размером, примерно равным диаметру отверстия. Отраженный предметом свет можно уловить фотопреобразователем — прибором, превращающим слабые потоки света в электрический сигнал. Этот сигнал можно усилить и снова изобразить световой точкой на экране монитора. Яркость точки на экране будет соответствовать интенсивности улавливаемого света. Станем теперь водить острием-зондом вдоль поверхности предмета строка за строкой. Световое пятно, выходящее из зонда, пробежит всю исследуемую поверхность. Такая процедура называется сканированием поверхности. Если точками разной яркости отмечать на экране монитора пройденный зондом путь, на экране появится изображение поверхности. Разрешение, характеризующее полученное изображение, соответствует диаметру освещающего поверхность пятна, т. е. существенно меньше \(~\frac{\lambda}{2}\). (Напомним, что минимальный, еще наблюдаемый размер деталей предмета называется разрешением микроскопа.) Итак, запрет Аббе преодолен! Новый прибор, с помощью которого удалось это сделать, получил название оптического сканирующего микроскопа ближнего поля. Как это ни парадоксально, такой оптический микроскоп позволяет рассматривать детали, во много раз меньшие длины световой волны!

Готовим микроскоп к работе

Техника подготовки микроскопа к работе предельно проста, но от ее соблюдения зависит комфорт пользователя:

  • подберите максимально удобный стул и стол, соответствующий возрасту пользователя прибора;

  • расположите устройство рядом с окном или источником освещения;

  • переставляя микроскоп, придерживайте его за держатель тубуса и основание;

  • установите прибор на столе, отступив 3-5 см от края;

  • перед тем, как пользоваться микроскопом, мягкой тканевой салфеткой протрите внешние оптические элементы: объективы, окуляры, зеркало;

  • полностью откройте диафрагму и опустите конденсор, если такие регулировки предусмотрены конструкцией прибора;

  • соблюдая правила работы с микроскопом, настройте лампу таким образом, чтобы она не слепила, но поле зрения было подсвечено равномерно и ярко;

  • обращайтесь с предметным стеклом предельно аккуратно – оно хрупкое;

  • алгоритм работы с микроскопом требует использования перчаток и защитных очков, если вы изучаете химические вещества;

  • если вы используете монокуляр, смотрите в него каждым глазом поочередно – так органы зрения будут меньше уставать.

Принцип работы

Сканирующий электронный микроскоп (СЭМ) – это тип электронного микроскопа, который изображает образец, сканируя его сфокусированным пучком заряженных электронов в растровом сканирующем узоре (прямоугольном узоре захвата и реконструкции изображения). Различные сигналы, которые могут быть обнаружены, когда электроны взаимодействуют с атомами в образце, где сигналы могут быть интерпретированы в информацию о свойствах поверхности образца. Затем положение луча комбинируется с обнаруженным сигналом для получения изображения. СЭМ может достигать разрешения лучше, чем 1 нанометр. Образцы можно наблюдать в высоком вакууме, в низком вакууме, во влажных условиях, в окружающей среде, а также в широком диапазоне криогенных или повышенных температур.

Наиболее распространенным режимом СЭМ является обнаружение вторичных электронов, испускаемых атомами, возбужденными электронным пучком. Количество вторичных электронов зависит от угла, под которым пучок встречается с поверхностью образца. При сканировании образца и сборе вторичных электронов с помощью специального детектора создается изображение, отображающее топографию поверхности.

Как следует из названия, СЭМ использует электронную пушку, которая испускает сфокусированный пучок электронов высокой энергии, заменяющий источник света, используемый в оптическом микроскопе.

Достоинства

  • Сила увеличения составляет около 300 000 х по сравнению с несколькими сотнями раз, которые производит оптический.
  • Обеспечивает большую глубину резкости по сравнению с оптическими, что позволяет сложным 3D-объектам оставаться четкими и в фокусе.
  • Можно делать высококачественные цифровые фотографии всего, что видно в это устройство.

Недостатки

  • Недостатки обычного СЭМ заключаются в том, что образец должен быть твердым и небольшим, чтобы он мог поместиться внутри камеры.
  • Очень легкие элементы, такие как H, He, Li и элементы, которые находятся ниже атомного номера 14, не могут быть обнаружены с помощью этого типа.
  • Самые дешевые стоят около десятков тысяч долларов и являются достаточно громоздкими и сложными инструментами, требующими высокой технической экспертизы и подготовки при обращении.

Таким образом, эти факты ограничивают использование при исследованиях и промышленном применении.

История

Кто изобрел составной микроскоп, сказать сложно. Часто говорят , что голландский Оптик Ханс Янссен и его сын Захария Янссен изготовил первый микроскоп в 1595, но это происходит из заявления самого Захария Янссен в середине XVII — го  века . Захариас Янссен родился около 1570 года.

Еще один фаворит как изобретатель микроскопа — Галилей . В 1609 году он разработал окчиолино , микроскоп, состоящий из выпуклой линзы и другой вогнутой линзы. Афанасиус Кирхер описал свой микроскоп в 1646 году, который он использовал для наблюдения за кровью.

Рисунок трех пчел, сделанный Франческо Стеллути, появляется на печати Папы Урбана VIII (1623–1644) и считается первым опубликованным микроскопическим изображением. Христиан Гюйгенс , другой голландец, разработанный в конце XVII — го  века простой двойной окуляр исправлены хроматические аберрации, что было большим шагом вперед в развитии микроскопа. Окуляр Гюйгенса все еще производится, но страдает от довольно маленького поля зрения и других незначительных проблем

Как правило , приписывается Левенгук (1632-1723) не притянув к себе внимание биологов на использовании микроскопа, даже если обычные увеличительные стекла уже были изготовлены и использованы в XVI — го  века. Изготовленные вручную микроскопы Ван Левенгука были простыми небольшими приборами с одной, но сильной линзой

Для сравнения, многолинзовые системы по-прежнему сложно разрабатывать, и потребовалось не менее 150 лет оптических разработок, прежде чем составной микроскоп смог обеспечить качество изображения, эквивалентное качеству одиночных микроскопов Ван Левенгука. Тем не менее, несмотря на многие заявления, нельзя считать Антони Ван Левенгука изобретателем составного микроскопа. Роберт Гук также был одним из первых, кто забеременел.

Краткая историческая справка

Флуоресценцию открыл Джордж Стокс в 1852 г. Английский физик наблюдал ее у хининовых веществ. Позже ученые выяснили, что облучение ультрафиолетом приводит к свечению многих соединений. Флуоресценция характерна для витаминов, кристаллов, горных пород, масел и хлорофилла. Однако полученные сведения применили позднее.

В 1930-х гг. ученые-биологи стали окрашивать бактерии и клетки флюорохромами, способствующими свечению. Был придуман микроскоп для подобных исследований.

Применение флуоресценции позволило изучать микрообъекты с разрешением от 1 до 10 нм. Наноскопия может раскладывать частицы на отдельные молекулы.

Кратко о методе флуоресцентной микроскопии

Метод основан на способности фоточувствительных молекул к структурной интеграции с микрообъектами. Они прикрепляются к образцам с помощью функциональных химических групп и при световом облучении возвращают часть поглощенных фотонов.

Исследователи принимают и анализируют интенсивность волновых сигналов, делая выводы о строении изучаемых объектов и протекающих в них процессах.


Принцип флуоресценции соединений.

Какие процессы участвуют

При флуоресценции происходят поглощение квантов и их последующее частичное высвобождение. Электроны облучаемого флуорофора приобретают дополнительную энергию и на мгновение перемещаются на более высокий энергетический уровень.

При возвращении в первичное состояние происходит высвобождение фотонов во внешнюю среду. В этом процессе часть энергии тратится на восстановление термодинамического равновесия, поэтому величина испускаемой волны больше длины волны возбуждения. Разницу между энергиями возбуждающего и испускаемого излучений называют стоксовым сдвигом.

Формирование изображения

Микроскопы оснащены электронными модулями, позволяющими визуализировать исследуемые объекты при низких уровнях световых сигналов. Эти узлы содержат устройства с зарядовой связью, способные преобразовывать волновую энергию в фототок.

Далее электрические заряды сканируются регистрами сдвига и преобразуются в аналоговые, а затем в цифровые сигналы. На основе полученных данных формируется изображение высокого разрешения в 12- или 16-битном формате.

Ключом к качественной визуализации является правильный подбор оптических фильтров, гарантирующих надежное разделение испускаемого тусклого от возбуждающего яркого света.


Оптическая схема микроскопа.

Принцип работы люминесцентного микроскопа

Принцип работы устройства заключается в испускании излучения объектом исследования вслед за светом возбуждения — электромагнитной волной с ультрафиолетовым диапазоном. Иногда используются зеленые или синие лучи. Они являются видимыми.


Принцип работы заключается в испускании излучения объектом исследования.

В микроскоп устанавливают зеркало, направляющее на исследуемый образец поток света. Его источником является ксеноновая или ртутная лампа. Отдельные лучи поглощаются материалом, остальные отражаются и направляются в пространство. Под ним подразумевается и глаз человека. Отраженное свечение источника забирает слабое излучение — собственное свечение микрообъекта. Для его отделения от ультрафиолета перед линзами устройства размещают светофильтр. Он отсекает лучи с более короткой электромагнитной волной.

Люминесценция отличается двойственным происхождением.

Виды микроскопов

На сегодняшний момент существует множество разновидностей данного прибора. Микроскопы бывают: оптические и электронные, рентгеновские и сканирующие зондовые. Есть также дифференциальный интерференционно-контрастный микроскоп.

Оптические приборы в свою очередь делятся на ближнепольные, конфокальные и двухфотонные лазерные микроскопы. Электронные подразделяются на просвечивающие и растровые устройства. Сканирующие представляют собой совокупность атомно-силовых и туннельных микроскопов, а рентгеновские приборы бывают лазерными, отражательными и проекционными.

Естественной оптической системой является глаз человека. При этом она характеризуется точным разрешением. Нормальное разрешение для обычного глаза составляет примерно 0,2 мм. Это характерно при удалении объекта на расстояние оптимального видения, которое составляет 250 мм. Стоит заметить, что размеры животных и растительных клеток, различных микроорганизмов, деталей структуры металлов и разного рода сплавов, а также мелких кристаллов намного меньше нормального разрешения для человеческого глаза.

Ученые примерно до середины прошлого века использовали в работе только видимое оптическое излучение, диапазоном от четырехсот до семисот нанометров. Иногда применялись приборы с ближним ультрафиолетом. Получается, что оптические микроскопы способны различать вещества с расстоянием между элементами до 0,20 мкм, а это значит, что он может добиться максимального увеличения 2000 крат.

В электронных устройствах для увеличения используется пучок электронов, обладающих волновыми свойствами. При этом электроны достаточно легко можно сфокусировать при помощи электромагнитных линз, потому что они представляют собой заряженные частицы. К тому же электронное изображение не составит труда перевести в видимое.

У электронных устройств разрешающая способность в несколько тысяч раз превышает разрешение светового оптического микроскопа. А в современных приборах она может быть даже менее десяти нанометров.

Сканирующие зондирующие микроскопы – это класс приборов, работа которых основана на сканировании зондом различных поверхностей. Это достаточно новые устройства, изображение на которых получается при помощи фиксирования соприкосновений между поверхностью и зондом. На данный момент в таких устройствах удалось добиться фиксации взаимодействия зонда с некоторыми молекулами и атомами, что выводит сканирующий зондирующий микроскоп на уровень электронных приборов. А в некоторых показателях такие устройства даже превосходят их.

Рентгеновские микроскопы представляют собой прибор, позволяющий исследовать очень малые объекты, величины которых можно сопоставить с длиной рентгеновской волны. Работа такого прибора основана на электромагнитном излучении, имеющим длину волны до одного нанометра. Разрешающая способность рентгеновских устройств намного выше оптических, но ниже электронных микроскопов.