Микроскоп строение принципы работы

Содержание материала

Устройство оптического микроскопа

Рассмотрим световой прибор, поскольку эта категория самая обширная, пользуется наибольшей популярностью для домашних и любительских исследований. С конструктивной точки зрения микроскоп состоит из трех частей (групп деталей).

  • Механическая – включает штатив, основание, предметный столик с препаратоводителем или без него, держатель для тубуса окуляра, револьверного устройства с объективами, фокусировочного механизма. Эта часть обеспечивает комфортную работу с микроскопом, фактически удерживая все остальные составляющие вместе.

  • Оптическая – сюда относятся линзы, окуляр, объективы, различные насадки и фильтры, элементы осветительной системы. Эта часть отвечает за формирование достаточно качественной и укрупненной картинки. Работа линз в микроскопе должна обеспечивать достоверное по форме и соотношению размеров изображение.

  • Электрическая – включает проводку и сами источники дополнительного света. Наличие этого элемента упрощает порядок работы с микроскопом, поскольку пользователь может вести наблюдения в любое время суток. Устройства, в которых за освещение образцов отвечает зеркало, менее универсальны.

Виды микроскопических исследований

С помощью микроскопа можно исследовать различные клетки человеческого организма. Для исследования берутся различные биологические материалы – кровь, моча, сперма, мазки, отделяемое слизистых и т.д.

В медицине сегодня проводятся несколько видов микроскопических исследований – стереоскопическая, инфракрасная, люминесцентная, ультрафиолетовая, рентгеновская, поляризационная микроскопии.

Анализ крови позволяет определить количественный и качественный состав крови, соотношение ее форменных элементов, выявить атипичные или незрелые клетки. Микроскопический анализ мочи позволяет определить наличие солей, клеточных элементов и цилиндров, исследование позволяет выявить имеющиеся проблемы в водно-электролитном балансе организма, также в нарушения процессов обмена веществ.

Несмотря на то, что сегодня широко используются специальные электронные аппараты для проведения лабораторных исследований – анализаторы, визуальный осмотр биологических материалов для выявления атипичных или незрелых клеток по-прежнему выполняется медицинским персоналом с помощью микроскопов.

В медицинских центрах «Гайде» можно пройти все виды лабораторных исследований. В любое удобное время и по доступной цене можно выполнить любые виды лабораторной диагностики, и по ее результатам получить квалифицированную консультацию специалиста по профилю заболевания. Записаться на консультацию можно по телефонам, указанным на сайте.

Биология

§ 6. Устройство увеличительных приборов

  1. Какие увеличительные приборы вы знаете?
  2. Для чего их применяют?

Если разломить розовый, недозревший, плод томата (помидор), арбуза или яблока с рыхлой мякотью, то мы увидим, что мякоть плодов состоит из мельчайших крупинок. Это клетки. Они будут лучше видны, если рассмотреть их с помощью увеличительных приборов — лупы или микроскопа.

Устройство лупы. Лупа — самый простой увеличительный прибор. Главная его часть — увеличительное стекло, выпуклое с двух сторон и вставленное в оправу. Лупы бывают ручные и штативные (рис. 16).

Рис. 16. Лупа ручная (1) и штативная (2)

Ручная лупа увеличивает предметы в 2—20 раз. При работе её берут за рукоятку и приближают к предмету на такое расстояние, при котором изображение предмета наиболее чётко.

Штативная лупа увеличивает предметы в 10—25 раз. В её оправу вставлены два увеличительных стекла, укреплённых на подставке — штативе. К штативу прикреплён предметный столик с отверстием и зеркалом.

Устройство лупы и рассматривание с её помощью клеточного строения растений

  1. Рассмотрите ручную лупу. Какие части она имеет? Каково их назначение?
  2. Рассмотрите невооружённым глазом мякоть полуспелого плода томата, арбуза, яблока. Что характерно для их строения?
  3. Рассмотрите кусочки мякоти плодов под лупой. Зарисуйте увиденное в тетрадь, рисунки подпишите. Какую форму имеют клетки мякоти плодов?

Устройство светового микроскопа. С помощью лупы можно рассмотреть форму клеток. Для изучения их строения пользуются микроскопом (от греческих слов «микрос» — малый и «скопео» — смотрю).

Световой микроскоп (рис. 17), с которым вы работаете в школе, может увеличивать изображение предметов до 3600 раз. В зрительную трубку, или тубус, этого микроскопа вставлены увеличительные стёкла (линзы). В верхнем конце тубуса находится окуляр (от латинского слова «окулус» — глаз), через который рассматривают различные объекты. Он состоит из оправы и двух увеличительных стёкол.

На нижнем конце тубуса помещается объектив (от латинского слова «объектум» — предмет), состоящий из оправы и нескольких увеличительных стёкол.

Тубус прикреплён к штативу. К штативу прикреплён также предметный столик, в центре которого имеется отверстие и под ним зеркало. Пользуясь световым микроскопом, можно видеть изображение объекта, освещенного с помощью этого зеркала.

Рис. 17. Световой микроскоп

Чтобы узнать, насколько увеличивается изображение при использовании микроскопа, надо умножить число, указанное на окуляре, на число, указанное на используемом объекте. Например, если окуляр даёт 10-кратное увеличение, а объектив — 20-кратное, то общее увеличение 10 х 20 = 200 раз.

Порядок работы с микроскопом

  1. Поставьте микроскоп штативом к себе на расстоянии 5—10 см от края стола. В отверстие предметного столика направьте зеркалом свет.
  2. Поместите приготовленный препарат на предметный столик и закрепите предметное стекло зажимами.
  3. Пользуясь винтом, плавно опустите тубус так, чтобы нижний край объектива оказался на расстоянии 1—2 мм от препарата.
  4. В окуляр смотрите одним глазом, не закрывая и не зажмуривая другой. Глядя в окуляр, при помощи винтов медленно поднимайте тубус, пока не появится чёткое изображение предмета.
  5. После работы микроскоп уберите в футляр.

Микроскоп — хрупкий и дорогой прибор: работать с ним надо аккуратно, строго следуя правилам.

Устройство микроскопа и приёмы работы с ним

  1. Изучите микроскоп. Найдите тубус, окуляр, объектив, штатив с предметным столиком, зеркало, винты. Выясните, какое значение имеет каждая часть. Определите, во сколько раз микроскоп увеличивает изображение объекта.
  2. Познакомьтесь с правилами пользования микроскопом.
  3. Отработайте последовательность действий при работе с микроскопом.

Вопросы

  1. Какие увеличительные приборы вы знаете?
  2. Что представляет собой лупа и какое увеличение она даёт?
  3. Как устроен микроскоп?
  4. Как узнать, какое увеличение даёт микроскоп?

Задания

Выучите правила работы с микроскопом.

Используя дополнительные источники информации, выясните, какие подробности строения живых организмов позволяют рассмотреть самые современные микроскопы.

Знаете ли вы, что…

Световые микроскопы с двумя линзами были изобретены в XVI в. В XVII в. голландец Антони ван Левенгук сконструировал более совершенный микроскоп, дающий увеличение до 270 раз, а в XX в. был изобретён электронный микроскоп, увеличивающий изображение в десятки и сотни тысяч раз.

Увеличение

Первое, на что обращает внимание большинство выбирающих микроскоп людей — это его увеличение. Но, хотя считается, что большая кратность — это хорошо, на самом деле ситуация немного другая

Чем больше увеличивает оптика, тем меньше становится поле зрения. И, получая большую картинку, исследователь может не понять, что именно он рассматривает на образце.

Для того чтобы лучше понять, какой микроскоп подойдет ребенку, стоит познакомиться с понятием полезного увеличения. Термин означает такую кратность, после превышения которой прибор работает как обычная лупа — то есть увеличивает, но не добавляет деталей.

Увеличения в 1000 раз может достигать профессиональный прибор, цена которого слишком большая для его покупки ребенку. А вот уже 400-600х хватит и для простых исследований, и для школьных лабораторных — и даже для пайки радиодеталей, при которой тоже может пригодиться недорогой микроскоп.

Клинические примеры. Видео

1. Минимальная инвазия: микро-зеркало

Исходная ситуация: отсутствующий 3.6 зуб, подготовительный этап перед проведением имплантации, санация ротовой полости. Выявлено кариозное изменение тканей апроксимальной поверхности 3.5 зуба (рис. 10-11).

Рис.10. Клиническая ситуация

Рис.11. Ревизия апроксимальной поверхности 35 зуба с помощью микро-зеркала

Препарирование: нет возможности провести препарирование только апроксимальной поверхности обычным наконечником, поскольку места для размещения цанги и бора недостаточно.

Использование ультразвуковой насадки и микро-зеркала позволяет осуществить минимально инвазивную обработку апроксимальной полости II класса без выведения препаровки на окклюзионную поверхность (рис. 12-15).

Рис.12-15. Для удаления каризно поврежденных тканей применяются УЗ апроксимальные насадки; для визуального контроля чистоты препарирования – микро-зеркало MEGAmicro (HAHNENKRATT, Германия)

Прямая реставрация: травление поверхности 37% H3PO4 с последующей адгезивной обработкой (рис. 16, 17); нанесение текучего композита на дно полости с помощью специальной насадки (рис. 18, 19); послойное внесение композита двойного отверждения, активация светополимеризации и готовая композитная реставрация 3.5 зуба (рис. 20-22). Визуальный контроль осуществляется посредством микро-зеркала.

Рис.16, 17. Травление 37% H3PO4
и адгезивная подготовка полости 35 зуба
Рис. 18, 19. Специальная насадка для нанесения текучего композита
Рис.20. Внесение композита Рис.21. Светополимеризация

Рис.22. Готовая реставрация

Для изучения техники малоинвазивного лечения кариеса с помощью микро-зеркала смотрите видео

2. Видеть или не видеть? Зеркало EverClear

При проведении различных стоматологических манипуляций (особенно при работе с УЗ инструментами) большое неудобство представляет необходимость постоянно прерывать процесс лечения, чтобы восстановить четкий обзор оперативного поля и почистить зеркало от водяных брызг и дебриса (рис. 23 а-в).

Рис.23 а-в. Нарастание низкой видимости операционного поля

Специальное зеркало EverClear от компании I-DENT обеспечивает практикующим врачам-стоматологам непрерывный визуальный контроль при любых лечебных процедурах, что особенно актуально при использовании ультразвуковых инструментов (рис. 24). Соответственно, сокращается время приёма и повышается продуктивность работы.

Рис.24 а, б. Особенности зеркала EverClear:
  • вращение отбрасывает дебрис и брызги за счет центробежной силы;
  • беспроводное устройство с подзарядкой;
  • микромагниты для быстрой смены зеркал

Клиническая демонстрация: препарирование глубокой кариозной полости 1.6 зуба с использованием зеркала EverClear (рис. 25 а-в). 

Рис.25 а-в. Сохранение четкого обзора операционного поля

Для сравнения качества визуального контроля над процессом работы при использовании незабрызгиваемого зеркала смотрите видео

Увеличение и освещение

Лечение зубов с помощью лупы или налобной оптики (рис. 1) имеет существенные преимущества перед «невооруженным» глазом. В эндодонтии операционный микроскоп первым предложил использовать Гарри Карр: кроме увеличения микроскоп лучше, чем традиционная стоматологическая лампа, освещает объект (рис. 2).

Рис.1. Очки Zeiss

Рис.2. Оптимизация освещения объекта

На сегодняшний день микроскоп-ориентированная практика (рис. 3) – это основной приоритет и основная тенденция развития современной стоматологии, главными принципами которой являются превентивные и малоинвазивные методы.

Рис.3. Микроскоп OPMI pico отCarl Zeiss оснащен делителем луча, адаптерами для видео и фотокамерой

Проведение эндодонтических и реставрационных манипуляций с использованием операционного микроскопа (рис. 4, 5) повышает вероятность успешного лечения и оптимизирует процесс работы врача-стоматолога.

Эргономика: • Комфорт для глаз. • Комфортная позиция. Видео!

Рис. 4, 5. На стоматологическом приеме в микроскоп-ориентированной практике 90% манипуляций ведется опосредованно

Смотрите Видео!

Фотокамеры

При использовании фотокамер, роль объектива выполняет микроскоп — иными словами, они используются без объектива. Не смотря на продолжающиеся споры в среде профессиональных фотографов — что лучше зеркальная камера или беззеркальная, в случае применения камеры с операционным микроскопом выигрывают «беззеркалки». Прежде всего, потому что имеют опцию фокуспикинга (рис. 4), что значительно облегчает настройку парафокуса без использования специального окуляра и фокусировку в кадре.

Рис. 4. FocusPeaking — подстветка участков фокусировки на экране камеры.

Еще одно преимущество «беззеркалок» — это размеры и вес. Исключением является сочетание камер Canon и специализированного софта для эндонтистов TDO, работающего в паре с софтом от Breeze Systems, который не доступен для большинства врачей нашей страны и постсоветского пространства из-за цены и отсутствия сертификации.

Именно по этим причинам в данной статье не будет подробного разбора использования зеркальных камер для документирования с операционным микроскопом.

Как правильно пользоваться микроскопом: настраиваем прибор

Интересуясь, как пользоваться микроскопом Levenhuk, обратите внимание, что большинство моделей позволяет менять объектив прямо во время наблюдений поворотом револьверной головки. Для начала работы с устройством бренда «Левенгук» или Bresser необходимо выбрать оптику с наименьшими показателями увеличения и провести базовую настройку

  • Разместите стекло с препаратом (слайд) на предметном столике и приблизьте к объективу на расстояние 3-4 мм.

  • Соблюдая последовательность работы с микроскопом, используйте колесико грубой настройки, чтобы медленно отдалять образец наблюдений от объектива. Делать это нужно до тех пор, пока изображение не станет четким.

  • Аккуратно поверните колесико тонкой настройки, чтобы картинка обрела максимальную резкость.

Основные правила работы с микроскопом гласят, что предметный столик или объектив нужно именно отдалять. Если смотреть в окуляр и одновременно приближать препарат, легко повредить предметный столик или оптику. Приемы работы с микроскопом очень просты: чтобы сменить предельную степень увеличения, достаточно повернуть револьверную головку до характерного щелчка. Но делать это также необходимо под наблюдением: оптика с большей кратностью длиннее и может зацепить предметное стекло. Поэтому работать с микроскопом нужно очень аккуратно, при необходимости повторяя настройку для каждого объектива в отдельности.

Если вы используете бинокулярный прибор, все описанные действия необходимо проводить, используя лишь один окуляр. Второй при подготовке микроскопа к работе легко подогнать при помощи регулировочного кольца. Точность такой регулировки легко определить: смотря в окуляры обоими глазами, пользователь должен видеть только одно изображение высокой четкости.

Зная, как правильно пользоваться микроскопом, вы гарантированно совершите немало личных открытий! Изучайте удивительные тайны окружающего мира прямо у себя дома.

Типы микроскопов

От самого первого до инструмента, доступного сегодня, есть большая разница в технологии. Сегодня существуют различные виды микроскопов, которые способны увеличить объект в значительной степени. Они различаются по увеличению, разрешению, способу освещения, типу объекта, формированию изображения, глубине резкости и т. д.

Составной

Вид микроскопа – составной, обыкновенно используется в учебных заведениях и входит в категорию чаще всего применяемых в биологии. Он имеет две линзы, а именно объектив и окулярную линзу и обеспечивает увеличение 1500-х. Объектив окуляра имеет увеличение 10-х или 15-х. Инструмент используется для наблюдения за бактериями, простейшими, различными клетками и т. д.
Некоторые используют естественный свет, в то время как другие имеют осветитель, прикрепленный к основанию, который действует как источник света.

Образец помещают на площадку и наблюдают через линзы, которые имеют различную силу увеличения.

Световой

Вид микроскопа – световой, также называют оптическим. Объектив окуляра 10-х или 16-х и обеспечивает увеличение до 1500-х. Применяют при изучении анатомии и физиологии мельчайших существ.

Препаровальный

Его еще называют стереомикроскопом. Его сила увеличения меньше, чем другие типы микроскопов, но он дает трехмерную картину. Из-за низкой увеличительной мощности они используются для наблюдения небольших объектов. Необходимы в хирургических операциях, вскрытии, криминалистике и т. д.

Цифровой

Тип микроскопа – цифровой, имеет цифровую камеру, которая крепится к монитору. Он имеет оптическую линзу, а также датчики и обеспечивает увеличение в 1000 раз. Используется для получения снимков объекта с высоким разрешением.

Электронный

Электронный имеет высокое разрешение чем другие типы микроскопов. Строение устройства сложное и имеет схему испускающую пучок электронов, которые сталкиваются с объектом. Это один из лучших видов, используемых для изучения клеток.

Они бывает двух типов: сканирующий электронный и просвечивающий. Некоторые работают в вакууме, что снижает вероятность столкновения электронов с другими молекулами воздуха.

Просвечивающий электронный

Обеспечивает достаточно высокий уровень увеличения используя электронный луч дающий 2-мерное изображение. Электроны ударяют в объект, который делает его видимым. Объект виден темным на светлом фоне.

Сканирующий электронный

Это разновидность типа электронного микроскопа. Он имеет ниже увеличение, чем просвечивающий электронный, но может получить трехмерное изображение.

Фазовый контрастный

Эти виды микроскопов работают с помощью специального светового конденсатора. Свет падает на объект с разной скоростью. В этом устройстве можно увидеть неокрашенные и живые микроорганизмы. Также можно наблюдать различные части клетки, такие как митохондрии,лизосомы, тела Гольджи, ядра и т. д.

Люминесцентный

Этот тип микроскопа работает с помощью ультрафиолетового света. Ультрафиолетовый свет освещает образец и возбуждает электроны объекта, которые можно увидеть в разных цветах. Для подсветки объекта используются флуоресцентные красители. Ультрафиолетовый свет увеличивает разрешение, что полезно для идентификации микроорганизмов.

Типы подсветки

Дни, когда единственным вариантом сбора света для микроскопа было зеркало, ушли в прошлое. Современные приборы оснащены электрической подсветкой, а значит, возможность работы с микроскопом не зависит более от условий освещения. Остановимся на самых распространенных типах подсветки.

Лампа накаливания

Освещение лампой накаливания – наиболее дешевый в производстве тип подсветки. Вольфрамовые лампы характеризуются стабильным свечением, но для микроскопии это не лучший вариант. Основные недостатки ламп накаливания перечислены ниже.

Теплый спектр излучаемого света: такое освещение заметно искажает цветопередачу оптики

Для образовательной сферы это не так уж важно, однако серьезные задачи с такой подсветкой не решаются.
Очень большое тепловое излучение: оно может убить исследуемых живых существ или иссушить препараты на слайдах.
Типы ламп не стандартизованы: бывает сложно найти подходящую для данной модели микроскопа.
Невозможно регулировать интенсивность свечения.

Светодиодная подсветка

LED (Light-Emitting Diode) – новейшая технология, применение которой дает множество преимуществ.

  1. Светодиоды потребляют крайне мало энергии: это позволяет выпускать даже переносные микроскопы, работающие от аккумуляторной батареи.
  2. LED-лампы излучают свет холодного спектра, наиболее предпочтительный для исследования прозрачных образцов.
  3. Осветители на светодиодах могут быть оборудованы диммером для плавного регулирования яркости.

Изначально LED-подсветкой оснащали в основном микроскопы студенческого уровня. Но последующие достижения в области LED- технологий сделали эти лампы ярче, надежней и долговечней, поэтому они быстро завоевали популярность в профессиональной сфере.

Галогеновая лампа

Галогеновую подсветку применяют на медицинских и исследовательских приборах. Лампы такого типа дают мощный поток света и всегда комплектуются регулятором яркости. На монокулярные микроскопы галогеновую подсветку почти не устанавливают из-за чрезмерной для такой оптической системы яркости, зато для бинокулярных моделей мощность светового излучения как раз оптимальна.

В микроскопии используются и другие виды подсветки – например, флюоресцентные кольцевые осветители. Но служат они весьма частным целям, и в общем обзоре останавливаться на их описании не имеет смысла.

Сфера применения оптического микроскопа

В последние пару десятилетий микроскоп перестал быть исключительно лабораторным оборудованием и «вышел в люди»: сфера его применения значительно расши­рилась. Теперь микроскопы покупают не только для исследований клеток в научных и лечебно-диагностических центрах, но и для дома, для школы и просто в подарок.

В качественный микроскоп среднего ценового сегмента можно увидеть растительные и животные клетки, грибы и микроорганизмы. Объектом самостоятельного исследования может послужить что угодно! К примеру, клетки лука под микроскопом вполне способны пробудить интерес к биологии не только у школьника, но и у пенсионера. Изучение микромира может стать увлекательным хобби для взрослого, в чьем детстве микроскопов в школах еще не было.

Очень распространены сегодня компактные цифровые микроскопы, подключаемые к ПК или ноутбуку через USB-порт. Весят USB-микроскопы всего 100-200 г, при этом генерируют изображение высокого разрешения на увеличениях в сотни крат. Обычные бинокулярные модели также могут быть оснащены цифровым окуляром – специальной камерой, которая устанавливается в окулярную трубку вместо обычного окуляра. Благодаря возможности выводить изображение на монитор или стену аудитории через проектор, микроскопы с камерами востребованы в учебных учреждениях разного уровня.

Замечание. Если вы нуждаетесь в простых советах и не готовы тратить время на чтение общих сведений, пропустите следующие разделы до .

Дополнительное оборудование

Оборудование с использованием делителя луча и адаптера для фото/видеокамеры. Основным преимуществом «навесного» оборудования является возможность замены или актуализации через несколько лет после приобретения, без замены узлов ОМ или всего ОМ.

Прежде, чем рассказать о выборе гаджетов, хотелось бы немного прояснить ситуацию с тем, как работает делитель луча и адаптер для камеры. Вопреки расхожему мнению, делитель луча не отнимает часть картинки и света от «сферического коня в вакууме».

Если изучить схему операционного микроскопа (рис. 3), становится очевидным, что каждая часть микроскопа (окуляры, система увеличения, объектив) являются самостоятельным оптическим прибором. Более того, каждый глаз при взгляде в окуляры видит «самостоятельную» картинку, которая «собирается» за пределами объектива. Таким образом, делитель луча «отсекает» часть изображения только с той стороны, с которой он расположен. Соответственно, и часть светового потока.

Рис. 3. Схема строения делителя луча.

Адаптер, по сути, является «объективом» для камеры, который получает изображение операционного поля через делитель и передает это изображение на матрицу (ранее на пленку) через зеркало. Таким образом, не зависимо от бренда ОМ и используемых гаджетов, принцип регистрации изображения остается неизменным, однако сами адаптеры для фото и видеокамер отличаются.

Адаптеры для видеокамеры имеют различные крепежи, наиболее распространенными являются с-mount и резьбовые адаптеры для камкодеров (хэндикам). Так же встречаются кастомные решения для камер Go-Pro.

C-mount камеры имеют те же недочеты, что и интегрированные решения. Как правило, используются устаревшие технологии, а матрицы маленького формата могут создавать много шумов в условиях недостаточной освещенности при больших увеличениях. Однако маленький размер самих камер, простота настройки, доступность камер и б/у адаптеров на интернет-площадках сделали их достаточно популярными среди западных коллег и производителей микроскопов в бюджетном сегменте.