Основы безопасности жизнедеятельности8 класс

Содержание материала

Каковы последствия радиационной катастрофы

Последствия проблемы могут быть значительными. Они могут коснуться загрязнения окружающей среды, включая атмосферу и гидросферу. Вещества попадают в продукты питания, приводя к инфицированию, отравлениям или развитию лучевой болезни у животных и людей. Радиационное воздействие на живых существ может носить внешний, внутренний или контактный характер.

Важно понять, что подготовиться к радиационным авариям невозможно. Катастрофа всегда происходит внезапно

Требуются оперативные действия профессионалов, чтобы предотвратить или минимизировать серьезный вред. Ядерные технологии – это бомба замедленного действия, которая способна, как обеспечить нескончаемым потоком энергии, так и уничтожить человечество в целом.

Ликвидация химических аварий

Это комплекс мер, предотвращающий распространение ОВ, снижающий потери населения, обеспечивающий стабильную работу объектов в заражённой зоне. Управляет процессом ликвидации комиссия по чрезвычайным ситуациям, в её обязанности входит:

  • выявление и оценка последствия химических аварий;
  • организация аварийно-спасательных и других обязательных работ в очаге поражения;
  • спецобработка оборудования и других материальных средств, участвующих в нейтрализации АХОВ;
  • санитарная помощь пострадавшим.

Порядок спасательных операций устанавливается на основе поражающих факторов аварии, возникшей на химическом объекте с выбросом ОВ.

Радиационные аварии и их основная классификация

Чтобы понять опасность от возможных катастроф, необходимо знать разницу между различными радиационными авариями. Разновидности представлены исходя из объемов катастрофы. Можно выделить следующие варианты:

  1. Локальные катастрофы. Это аварии, которые нарушают работу предприятия или реактора, но уровень загрязнения при этом не превышает нормы.
  2. Местные аварии. Катастрофа касается самого объекта, а также охватывает санитарно-защитную зону. Выбросы превышают норму, которая была установлена для реактора.
  3. Общие катастрофы. Здесь проблема касается функционирования предприятия, загрязнение выходит за границы санитарно-защитной зоны, уровень выбросов выше нормального. Возможно не только загрязнение окружающих территорий, но также облучение населения.

Также катастрофы можно разделить по техническим последствиям. К ним относят такие аварии:

  1. Гипотетическая катастрофа. Ее последствия предугадать невозможно или очень сложно.
  2. Запроектная катастрофа. Это возможная авария, которая происходит внезапно, а ее возникновение не было прописано в техническом проекте.
  3. Проектная катастрофа. Эта авария была заложена в проекте установки, она предусмотренная, поэтому ее устранение быстрое и простое.
  4. Реальная авария. Это катастрофа, которая уже произошла.

Также все катастрофы могут происходить с разрушением ядерного реактора или без разрушения.

Причины техногенных чрезвычайных ситуации

Техногенные катастрофы сопутствуют человеческой жизнедеятельности и напрямую связаны с ней. Именно поэтому человека, его умышленные или неумышленные действия, можно назвать основной причиной их появления. Вместе с тем выделяют следующие, более объективные, причины возникновения техногенных ЧС:

  • неудачное размещение объектов производства, хозяйственной или социальной инфраструктуры, в результате которого может возникнуть масштабная техногенная катастрофа;
  • отсталость в технологиях, применяемых при производстве; недостаточная внедряемость энергосберегающих и иных инновационных процессов;
  • высокий износ производственного оборудования, приводящий к предаварийным ситуациям;
  • увеличение производственных мощностей, приводящее к недостатку транспортных средств и нарушению техники безопасности;
  • недостаток высококвалифицированных работников, низкий уровень комфортности при производстве;
  • снижение производственной дисциплины, низкая ответственность должностных лиц;
  • отсутствие внутреннего контроля на объекте за существующими производственными технологиями;
  • низкий уровень техники безопасности, отсутствие соответствующих функциональных должностей;
  • недостатки существующих нормативных правовых актов, регулирующих технологические процессы;
  • воздействие внешних природных факторов, приводящих к образованию предаварийных ситуаций;
  • конструктивные недостатки при строительстве зданий, объектов хозяйственной и социальной инфраструктуры;
  • низкий уровень управления контролем доступа в здание.

Справка: на каждом энергообъекте Российской Федерации происходит до 100 страховых случаев предаварийных ситуаций, связанных с износом оборудования. Меры по предотвращению ЧС техногенного характера Мероприятия по предотвращению техногенных аварий прежде всего основаны на заблаговременных профилактических, организационных, инженерных и иных действиях, которые помогают заранее предсказать аварийную ситуацию, просчитать риски и снизить ее последствия в случае вероятного возникновения. Их разделяют на следующие:

  • мониторинг потенциально опасной внутренней производственной и внешней природной среды, состояния технологических линий и объектов;
  • прогнозирование развития аварийной ситуации в случае ее возникновения на основании полученных сведений;
  • превентивные меры для снижения риска аварийной ситуации.

Превентивные меры осуществляются по следующим направлениям:

  • выделение событий, которые могут привести к ЧС техногенного характера;
  • снижение вероятности возникновения таких событий.

Для снижения вероятности возникновения событий, приводящих к аварийной ситуации, осуществляются следующие мероприятия:

  • районирование территории (сейсмологическое, гидрологическое, геологическое, климатическое, экономическое), на основании результатов которого определяется рациональное размещение объектов хозяйственного комплекса, в частности рационального выбора площадок для потенциально опасных объектов;
  • предупреждения (снижение интенсивности) некоторых опасных производственных процессов и внешних природных явлений;
  • профилактики аварийной ситуации (диагностика оборудования, планово-предупредительные ремонты, техническое обслуживание);
  • профилактика терроризма и преступности на предприятии;
  • проведение мероприятий по повышению квалификации персонала;
  • снижение уровня нагрузок на технологические и транспортные линии объектов;
  • снижение уязвимости объектов к воздействию негативных (поражающих) факторов опасных природных и техногенных явлений;
  • обеспечение устойчивости зданий к нагрузкам
  • обеспечение эффективности (надежности) систем безопасности, препятствующих перерастанию экстремальных ситуаций в аварию.

Справка: Федеральная служба судебных приставов может приостановить деятельность предприятия на срок до 60 суток в случае выявления обстоятельств, которые могут привести к техногенной чрезвычайной ситуации, для их устранения.

ЗАМОК БРАВО — 1 МАРТА 1954 Г.

Микронезийские острова в Тихом океане, были местом проведения более 20 испытаний ядерного оружия между 1946 и 1958 годами. Замок Браво был кодовым названием, данным первому тесту на термоядерную водородную бомбу сухого топлива. Тест был проведен 1 марта 1954 года на атолле Бикини на Маршалловых островах. Когда Оружие было взорвано, произошел взрыв, в результате чего был образован кратер диаметром 6500 футов (2000 м) и глубиной 250 футов (75 м). Замок Браво был очень мощным ядерным устройством, с размером в 15 мегатонн, который намного превышал ожидания (4-6 мегатонн). Этот просчет привел к серьезному радиологическому загрязнению, когда-либо вызванному Соединенными Штатами. Что касается эквивалентности тоннажа ТНТ, то замок Браво был примерно в 1200 раз более мощным, чем атомные бомбы, которые были сброшены на Хиросиму и Нагасаки во время Второй мировой войны. Кроме того, радиационное облако загрязнило более семи тысяч квадратных миль окружающего Тихого океана, включая небольшие острова, такие как Ронджерик, Ронгелап и Утирик. Эти острова были эвакуированы, но все же местные жители были подвержены воздействию радиации. Уроженцы с тех пор страдали от врожденных дефектов. Японское рыболовное судно Daigo Fukuryu Maru также вступало в контакт с ядерными осадками, вызывая болезни для всех членов экипажа с одной фатальностью. Рыба, вода и земля были серьезно загрязнены, что сделало замок Браво одним из худших ядерных аварий.

АЭС «МАЯК» — 29 СЕНТЯБРЯ 1957 Г.

АЭС «Маяк», также известная как Челябинск-40, а позднее «Челябинск-65» является одним из крупнейших ядерных объектов в Российской Федерации. Это неотъемлемая часть российской программы ядерного оружия. За последние 45 лет этот объект испытал 20 или более несчастных случаев, затрагивающих не менее полумиллиона человек. Самая известная авария произошла 29 сентября 1957 года, разоблачая секретные газеты Советов. Неисправность системы охлаждения резервуара, хранящего десятки тысяч тонн растворенных ядерных отходов, привела к химическому (неядерному) взрыву, имеющему силу, составляющую около 75 тонн тротила (310 гигаджоулей), которая выпустила около 2 миллионов кюри радиоактивности более 15 000 кв. миль, в результате которой погибло по меньшей мере 200 человек от лучевой болезни, 10 000 человек были эвакуированы из своих домов, а 470 000 человек подверглись радиации. Жертвы видели, как кожа «сползала» с лица, рук и других части их тела. Большая площадь стала бесплодной и непригодной для использования в течение десятилетий и, возможно, веков. Авария привела к большому числу погибших, тысячи получили ранения, а прилегающие районы были эвакуированы. Он классифицируется как «серьезная авария» шестом уровне из семи по Международной шкале ядерных событий.

Паломарский инцидент с водородной бомбой

С водородными бомбами тоже бывают инциденты.

17 января 1966 года двенадцать бомбардировщиков B-52 везли водородные бомбы в страны союзников в Европе в рамках военных учений под названием Operation Chrome Dome. Цель состояла в том, чтобы подготовиться к первому столкновению с Советским Союзом во время «холодной войны».

Один из бомбардировщиков столкнулся с танкером KC-135, который пытался заправиться в воздухе над южным побережьем Испании. Авария привела к тому, что оба самолета накрыло топливом, и они вспыхнули и взорвались. Хотя несколько человек смогли безопасно парашютировать на землю, в результате взрыва погибло семеро. Обломки самолетов упали на Паломарес, приморскую фермерскую деревню на юге Испании.

Местное население не осознавало, что обломки распространят радиоактивный плутоний по всему району, загрязняя землю и водоснабжение всего города. Три бомбы немедленно восстановили. Четвертую не могли найти три месяца, аж до 7 апреля 1966 года.

Впервые в истории американские военные показали общественности ядерное оружие. Проверка населения выявила некоторые следы радиации, и показатели рака были аналогичны тем, которые наблюдались в других городах в этой области. С момента обнаружения загрязнения в почве в 2006 году, американское правительство, наконец, согласилось помочь Испании в восстановительном процессе. Вопрос не удалось решить сразу.

Основные загрязняющие радиоактивные вещества

Радиоактивное загрязнение предполагает выбросы компонентов, загрязняющих окружающую среду. Каждый радионуклид характеризуется периодом полураспада. Это срок, после которого элемент утратит свои радиоактивные свойства. Сравнительная таблица основных загрязняющих веществ:

Наименование Период полураспада Основные источники
Йод-131 8 суток Ядерные испытания
Стронций-90 28,8 года Выбросы АЭС, ядерные взрывы
Цезий-137 30 лет Ядерные испытания, техногенные аварии АЭС
Кобальт-60 5,3 года Медицина и наука
Америций-241 433 года Атомная промышленность

Наибольшую опасность несут йод, америций и стронций. Цезий является одним из основных компонентов загрязнения биосферы в ходе ядерных испытаний. Кобальт имеет искусственное происхождение и широко применяется в научных целях (радиохирургия, модификация полимеров и пр.).

Чем грозит человечеству глобальное загрязнение воздушной оболочки нашей планеты?

Читать

Определение степени загрязнения воздуха с помощью индекса загрязнения атмосферы

Подробнее

Загрязнение атмосферы Земли: классификация по виду и составу

Смотреть

Аварии с выбросом радиоактивных веществ — угроза для всего живого

Ошибочно полагать, что радиоактивность связана со строительством атомных электростанций и появлением ядерного оружия.

Радиоактивность и постоянный её спутник — ионизирующее излучение — существовали на нашей планете с самого начала её времен — тогда, когда жизни на ней даже в помине ещё не было.

Открытие же радиации как явления произошло более ста лет назад, благодаря французскому физику А.Беккерелю, впервые наблюдавшему проникающее излучение, испускаемое ураном, которое он назвал радиоактивным.

Источники ионизирующих излучений и радиоактивные вещества в настоящее время применяются практически везде, динамично развивается ядерная энергетика.

Они таят в себе колоссальные возможности, в них же заключена и огромная опасность для окружающей среды и людей.

Свидетельство тому — крупные радиационные аварии (взять хотя бы одну из наиболее масштабных катастроф прошлого века — аварию на Чернобыльской АЭС).

Понятие о радиационной аварии

Радиационной аварией называют аварию на радиационно опасном объекте, результатом которой является выброс в окружающую среду радиоактивных продуктов и ионизирующего излучения в количествах, превышающих допустимые нормы. Зону риска составляют следующие виды объектов:

  • Атомные электростанции и атомные энергетические установки, выполняющие производственные и исследовательские задачи;
  • Предприятия ядерно-топливного цикла;
  • Средства транспорта и космические аппараты, имеющие на своем борту радиоактивный груз или оснащенные ядерными установками;
  • Зоны хранения, нахождения или установки ядерных боеприпасов;
  • Места проведения ядерных взрывов с промышленной или испытательной целью.

Классификация

Радиационные аварии принято делить на классы, исходя из их масштабов. В зависимости от границ распространения радиоактивных веществ и возможных последствий катастрофы, выделяют аварии:

  • Локальные. Нарушается работа радиационно опасного объекта, но выброс радиоактивных веществ и ионизирующего излучение не превышает установленные для нормальной эксплуатации предприятия нормы.
  • Местные. Нарушается работа радиационно опасного объекта, выброс радиоактивных продуктов выходит за границы санитарно-защитной зоны и превышает нормальные значения, установленные для этого предприятия.
  • Общие. Нарушается работа объекта, выброс радиоактивных веществ и излучения выходит за границы санитарно-защитной зоны, превышает допустимые показатели и приводит к радиоактивному загрязнению прилегающих территорий и возможному облучению населения.

В зависимости от технических последствий, радиационные аварии подразделяются на:

  • Проектные — возможность возникновения аварии предусмотрена техническим проектом ядерной установки. Предвиденная авария, которую относительно легко устранить.
  • Запроектные — возможная авария, возникновение которой не заложено в техническом проекте.
  • Гипотетические — авария с последствиями, которые сложно предугадать.
  • Реальная — состоявшаяся авария.

Аварии с выбросом радиации также происходят либо с разрушением ядерного реактора, либо без его разрушения.

Причины радиационных аварий

Исходных причин, приводящих к авариям на радиационно опасных объектах, может быть много. Условно выделяются три ключевых группы:

  1. Отказ оборудования из-за несовершенства конструкции установки, ошибки во время его изготовления, монтажа или эксплуатации.
  2. Ошибка персонала предприятия, нарушение эксплуатационных правил.
  3. Внешние факторы (стихийные бедствия, поражение оружием, диверсионные акты и др.).

Течение радиационной аварии

Течение аварии с выбросом радиоактивных веществ включает в себя четыре фазы:

  1. Начальная фаза. Первая фаза радиационной аварии называется начальной. Быстротечная период, когда ещё не наблюдается выброс радиоактивных продуктов в окружающую среду. Может быть обнаружена возможность облучения населения, проживающего за границами санитарно-защитной зоны радиационного объекта.
  2. Ранняя фаза. Период продолжается от несколько минут и часов (разовый выброс) до нескольких суток (продолжительный выброс). Происходит сброс радиации в окружающую среду и населенную людьми территорию.
  3. Средняя фаза. Период продолжается от нескольких дней до года. Особенность — дополнительный выброс радиоактивных продуктов не наблюдается.
  4. Поздняя фаза. Период восстановления, когда население возвращается к нормальной и привычной жизнедеятельности. Фаза занимает несколько недель, лет или даже десятилетий — в зависимости от особенностей радиоактивного загрязнения. Начинается она после того, как отпадает необходимость выполнять защитные меры.

Классификация

Радиационные аварии принято делить на классы, исходя из их масштабов. В зависимости от границ распространения радиоактивных веществ и возможных последствий катастрофы, выделяют аварии:

  • Локальные. Нарушается работа радиационно опасного объекта, но выброс радиоактивных веществ и ионизирующего излучение не превышает установленные для нормальной эксплуатации предприятия нормы.
  • Местные. Нарушается работа радиационно опасного объекта, выброс радиоактивных продуктов выходит за границы санитарно-защитной зоны и превышает нормальные значения, установленные для этого предприятия.
  • Общие. Нарушается работа объекта, выброс радиоактивных веществ и излучения выходит за границы санитарно-защитной зоны, превышает допустимые показатели и приводит к радиоактивному загрязнению прилегающих территорий и возможному облучению населения.

В зависимости от технических последствий, радиационные аварии подразделяются на:

  • Проектные — возможность возникновения аварии предусмотрена техническим проектом ядерной установки. Предвиденная авария, которую относительно легко устранить.
  • Запроектные — возможная авария, возникновение которой не заложено в техническом проекте.
  • Гипотетические — авария с последствиями, которые сложно предугадать.
  • Реальная — состоявшаяся авария.

Аварии с выбросом радиации также происходят либо с разрушением ядерного реактора, либо без его разрушения.

Не только атом

Утверждение «атомная энергетика чрезвычайно опасна» – обосновано. Мысль «атомная энергетика опаснее всего, потому неприемлема» – ошибочна. Лишь за последние годы мы знаем не одну катастрофу или крупную аварию в другой области энергетики – на гидроэлектростанциях. Последствия были не менее серьёзны, за исключением заражения радиацией.

Причём, на тепловых и гидроэлектростанциях техногенные катастрофы за всю историю их существования происходили гораздо чаще, нежели на АЭС. Нередко тоже с человеческими жертвами, а ущерб, что повлекли эти аварии, вполне сопоставим с ущербом, вызванным катастрофами на АЭС.

Достаточно упомянуть, что только с 2005 года зафиксировано более 30 крупных и средних аварий на ТЭЦ и ГРЭС в мире. Например, в 2011 году шторм, обрушившийся на атлантическое побережье США, оставил без электричества около 4 миллионов домов. Было нарушено электроснабжение объектов инфраструктуры, в том числе дорожных светофоров и указателей. Стихия затронула штаты Западная Виргиния, Виргиния, Мэриленд, а также столицу Вашингтон. В том же году в Индии произошел энергокризис, который затронул 19 штатов севера и востока страны. От перебоев с электроэнергией пострадали более 600 миллионов человек.

А в таблице ниже представлены крупнейшие катастрофы, произошедшие на электростанциях, не использующих атомную энергию, повлекшие человеческие жертвы (источник – Expert.ru).

Дата Страна Погибших (чел.) Описание
1975 Китай Сотни тысяч Тайфун «Нина» прорывает дамбу в верховьях реки Ру. Образовавшаяся гигантская волна проходит по рекам Ру и Хуай, сметая с пути все, в том числе 62 дамбы и плотины ГЭС. Число жертв умножается разразившимися в районе бедствия эпидемиями
9 октября 1963 года Италия 2000 Обрушение горного массива в водохранилище на плотине Вайонт. Перелившаяся через край плотины вода за 15 минут смыла несколько населенных пунктов
11 февраля 2005 года Пакистан 130 Прорыв из-за ливневого паводка 150-метровой плотины ГЭС «Шакидор» в Пакистане. Затоплено несколько деревень
17 августа 2009 года Россия 75* Разрушение и затопление машинного зала Саяно-Шушенской ГЭС
6 ноября 1977 года США 39 Прорыв плотины ГЭС в штате Техас. ГЭС была построена в 1889 году и в 1957 году остановлена. Прорыв произошел из-за ветхости плотины и халатности обслуживающего персонала
5 октября 2007 года Вьетнам 35 Прорыв плотины строящейся ГЭС «Кыадат» на реке Чу в Китае из-за ливневого паводка. Затоплено 5 тыс. домов
27 мая 2004 года Китай 20 Разрушение паводковыми водами защитной дамбы электростанции «Далунтань» на реке Цинцзян в Китае
* Включая пропавших без вести

ЗЕМЛЕТРЯСЕНИЕ В ПРЕФЕКТУРЕ ФУКУСИМА — 11 МАРТА 2011 Г.

В пятницу на северо-востоке Японии произошло массовое землетрясение силой 9 баллов, в результате чего погибли десятки человек, более 80 пожаров. 10-метровое цунами снесло все вдоль побережья. Дома были сметены, а ущерб был обширен. И на этом катастрофа не остановилась. 11 реакторов на четырех участках вблизи северо-восточного побережья Японии были отключены по сейсмическим аварийным процедурам. Пять реакторов на двух объектах в префектуре Фукусима объявили о чрезвычайных ситуациях из-за потери нормальной мощности участка и резервного аварийного питания. По словам британского ядерного эксперта, взрыв на атомной электростанции Фукусима-I выглядит скорее «значительным ядерным событием» с большим воздействием на общественное здравоохранение, нежели катастрофа 1979 года на Три-Майл-Айленде. По состоянию на 15 марта финский орган по ядерной безопасности оценил несчастные случаи на Фукусиме на уровне 6 по шкале INES. 24 марта научный консультант «Гринпис», работающий с данными австрийского ZAMG и французского IRSN, подготовил анализ, в котором он оценил общую аварию на 7 уровне. Авария вызвала ядерное загрязнение в окружающей среде, воде, молочных, овощных и других продуктах питания. Люди, живущие в поврежденных районах, были перемещены в безопасные места, и продукты, выращенные в этом районе, были запрещены для продажи. Японское правительство справлялось с ситуацией самыми эффективными и удивительными способами. Проводились различные медицинские осмотры, и людям предоставлялась надлежащая медицинская помощь.

Жертвы и пострадавшие

В первые дни после аварии были эвакуированы жители в радиусе 20 км вокруг АЭС, а затем дополнительно и жители загрязненных районов вне этого участка. Все они находятся внутри префектуры Фукусима. Всего же из префектуры с населением 1,8 млн человек по всем причинам, из-за цунами, землетрясения и аварии на АЭС, было эвакуировано 164 тыс. человек. По всей же Японии суммарно было эвакуировано 470 тыс. человек в трех провинциях. Постепенно территории очищали и восстанавливали. На сегодняшний момент около 130 тыс. эвакуированных в провинции Фукусима уже вернулись обратно.

Зоны эвакуации (цветные) вокруг АЭС Фукусима на 2017 год. Зоны «в горошек» возвращены к использованию

При этом сам процесс эвакуации — штука не только сложная, но и опасная. Во время самого цунами в префектуре Фукусима погибли 1829 человек. Но еще 2259 жертв относят к так называемым связанным с катастрофой смертям – это погибшие позже из-за стресса или медицинских осложнений, вызванных эвакуацией. В основном это пожилые люди и/или пациенты больниц. При этом случаев из них связывают с эвакуацией из-за аварии на АЭС. В некотором смысле эвакуация убила больше людей, чем сама авария и риск облучения. А он на самом деле был не так уж и велик.

По различным оценкам, включая данные Всемирной организации здравоохранения, эвакуированные в первые дни после аварии могли получить дозы до 6 мЗв, эвакуированные позже — до 10 мЗв. Это для взрослых и это консервативные оценки. Для детей оценка дозы в два раза выше. При этом дозы от природных источников в Японии составляют около 2,1 мЗв/год, и еще столько же от медицинских процедур. Т.е. средний японец и без всякой Фукусимы получает около 4 мЗв в год или порядка 200-300 мЗв за всю жизнь. Кстати, критерием для отселения территорий была величина дополнительной дозы в размере 20 мЗв, получаемая при проживании на ней в течении жизни.

Таким образом, радиационное воздействие от аварии на население получилось небольшое, сопоставимое с обычными дозами от природных источников. До сих пор, даже спустя 10 лет многочисленных исследований, как отмечается в свежем отчете Научного комитета по действию атомной радиации ООН, нет никаких свидетельств наличия негативных последствий для здоровья жителей префектуры Фукусима, связанных с радиационным воздействием от аварии.

А что с ликвидаторами? Среди рабочих и сотрудников АЭС во время прихода цунами на станцию 11 марта погибли двое рабочих. Однако из-за облучения никто во время аварии не погиб. Так же не было ни одного случая заболевания лучевой болезнью. Для сравнения, в Чернобыле 28 человек погибли от переоблучения в первые же недели, более 130 получили лучевую болезнь.

Из около 25 тыс. работников компании TEPCO (оператора АЭС Фукусима-Дайичи) и подрядных организаций, занимавшихся ликвидацией последствий аварии, средние полученные дозы составили 12 мЗв (UNSCEAR 2013 Report, стр 2018). 173 человека получили дозы более 100 мЗв, шестеро — более 250 мЗв (норматив для чернобыльцев в первые годы аварии) до 680 мЗв. Но и эти дозы ниже уровней, представляющих непосредственную угрозу здоровью в виде детерминированных эффектов или начала лучевой болезни (от 1000 мЗв).

За всеми работниками ведется наблюдение и регулярные медосмотры. Однако ожидается, что как и для населения, среди ликвидаторов статистически не удастся выявить повышение частоты рака над обычным уровнем из-за малой выборки и низких доз (ВОЗ). А в каждом конкретном случае отличить радиационно-индуцированный рак от спонтанного невозможно. Тем не менее, специальная комиссия рассматривает случаи возникновения заболеваний среди ликвидаторов для определения связи их с облучением и выделения компенсаций. Связанными с облучением уже признаны три случая заболевания лейкемией. В 2018 году был признан первый связанный с аварийным облучением смертельный случай от рака легкого. Впрочем, сторонними экспертами связь его с облучением ставится под сомнение.